-
Notifications
You must be signed in to change notification settings - Fork 13
/
Copy pathtnt.py
324 lines (281 loc) · 9.55 KB
/
tnt.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
import math
import numpy as np
import paddle
import paddle.nn as nn
import paddle.vision.transforms as T
from ppim.models.vit import Mlp
from ppim.models.common import load_model
from ppim.models.common import DropPath, Identity
from ppim.models.common import trunc_normal_, zeros_, ones_
transforms = T.Compose(
[
T.Resize(248, interpolation="bicubic"),
T.CenterCrop(224),
T.ToTensor(),
T.Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5]),
]
)
urls = {
"tnt_s": r"https://bj.bcebos.com/v1/ai-studio-online/e8777c29886a47e896f23a26d84917ee51efd05d341a403baed9107160857636?responseContentDisposition=attachment%3B%20filename%3Dtnt_s.pdparams"
}
class Attention(nn.Layer):
def __init__(
self, dim, hidden_dim, num_heads=8, qkv_bias=False, attn_drop=0.0, proj_drop=0.0
):
super().__init__()
self.hidden_dim = hidden_dim
self.num_heads = num_heads
head_dim = hidden_dim // num_heads
self.head_dim = head_dim
self.scale = head_dim ** -0.5
self.qk = nn.Linear(dim, hidden_dim * 2, bias_attr=qkv_bias)
self.v = nn.Linear(dim, dim, bias_attr=qkv_bias)
self.attn_drop = nn.Dropout(attn_drop)
self.proj = nn.Linear(dim, dim)
self.proj_drop = nn.Dropout(proj_drop)
def forward(self, x):
B, N, C = x.shape
qk = (
self.qk(x)
.reshape((B, N, 2, self.num_heads, self.head_dim))
.transpose((2, 0, 3, 1, 4))
)
q, k = qk[0], qk[1]
v = self.v(x).reshape((B, N, self.num_heads, -1)).transpose((0, 2, 1, 3))
attn = (q @ k.transpose((0, 1, 3, 2))) * self.scale
attn = nn.functional.softmax(attn, axis=-1)
attn = self.attn_drop(attn)
x = (attn @ v).transpose((0, 2, 1, 3)).reshape((B, N, -1))
x = self.proj(x)
x = self.proj_drop(x)
return x
class Block(nn.Layer):
def __init__(
self,
dim,
in_dim,
num_pixel,
num_heads=12,
in_num_head=4,
mlp_ratio=4.0,
qkv_bias=False,
drop=0.0,
attn_drop=0.0,
drop_path=0.0,
act_layer=nn.GELU,
norm_layer=nn.LayerNorm,
):
super().__init__()
# Inner transformer
self.norm_in = norm_layer(in_dim)
self.attn_in = Attention(
in_dim,
in_dim,
num_heads=in_num_head,
qkv_bias=qkv_bias,
attn_drop=attn_drop,
proj_drop=drop,
)
self.norm_mlp_in = norm_layer(in_dim)
self.mlp_in = Mlp(
in_features=in_dim,
hidden_features=int(in_dim * 4),
out_features=in_dim,
act_layer=act_layer,
drop=drop,
)
self.norm1_proj = norm_layer(in_dim)
self.proj = nn.Linear(in_dim * num_pixel, dim)
# Outer transformer
self.norm_out = norm_layer(dim)
self.attn_out = Attention(
dim,
dim,
num_heads=num_heads,
qkv_bias=qkv_bias,
attn_drop=attn_drop,
proj_drop=drop,
)
self.drop_path = DropPath(drop_path) if drop_path > 0.0 else Identity()
self.norm_mlp = norm_layer(dim)
self.mlp = Mlp(
in_features=dim,
hidden_features=int(dim * mlp_ratio),
out_features=dim,
act_layer=act_layer,
drop=drop,
)
def forward(self, pixel_embed, patch_embed):
# inner
pixel_embed = pixel_embed + self.drop_path(
self.attn_in(self.norm_in(pixel_embed))
)
pixel_embed = pixel_embed + self.drop_path(
self.mlp_in(self.norm_mlp_in(pixel_embed))
)
# outer
B, N, C = patch_embed.shape
patch_embed[:, 1:] = patch_embed[:, 1:] + self.proj(
self.norm1_proj(pixel_embed).reshape((B, N - 1, -1))
)
patch_embed = patch_embed + self.drop_path(
self.attn_out(self.norm_out(patch_embed))
)
patch_embed = patch_embed + self.drop_path(self.mlp(self.norm_mlp(patch_embed)))
return pixel_embed, patch_embed
class PixelEmbed(nn.Layer):
def __init__(self, img_size=224, patch_size=16, in_chans=3, in_dim=48, stride=4):
super().__init__()
num_patches = (img_size // patch_size) ** 2
self.img_size = img_size
self.num_patches = num_patches
self.in_dim = in_dim
new_patch_size = math.ceil(patch_size / stride)
self.new_patch_size = new_patch_size
self.proj = nn.Conv2D(
in_chans, self.in_dim, kernel_size=7, padding=3, stride=stride
)
def forward(self, x, pixel_pos):
B, C, H, W = x.shape
assert (
H == self.img_size and W == self.img_size
), f"Input image size ({H}*{W}) doesn't match model ({self.img_size}*{self.img_size})."
x = self.proj(x)
x = nn.functional.unfold(
x, kernel_sizes=self.new_patch_size, strides=self.new_patch_size
)
x = x.transpose((0, 2, 1)).reshape(
(
B * self.num_patches,
self.in_dim,
self.new_patch_size,
self.new_patch_size,
)
)
x = x + pixel_pos
x = x.reshape((B * self.num_patches, self.in_dim, -1)).transpose((0, 2, 1))
return x
class TNT(nn.Layer):
def __init__(
self,
img_size=224,
patch_size=16,
in_chans=3,
embed_dim=768,
in_dim=48,
depth=12,
num_heads=12,
in_num_head=4,
mlp_ratio=4.0,
qkv_bias=False,
drop_rate=0.0,
attn_drop_rate=0.0,
drop_path_rate=0.0,
norm_layer=nn.LayerNorm,
first_stride=4,
class_dim=1000,
):
super().__init__()
self.class_dim = class_dim
# num_features for consistency with other models
self.num_features = self.embed_dim = embed_dim
self.pixel_embed = PixelEmbed(
img_size=img_size,
patch_size=patch_size,
in_chans=in_chans,
in_dim=in_dim,
stride=first_stride,
)
num_patches = self.pixel_embed.num_patches
self.num_patches = num_patches
new_patch_size = self.pixel_embed.new_patch_size
num_pixel = new_patch_size ** 2
self.norm1_proj = norm_layer(num_pixel * in_dim)
self.proj = nn.Linear(num_pixel * in_dim, embed_dim)
self.norm2_proj = norm_layer(embed_dim)
self.cls_token = self.create_parameter(
shape=(1, 1, embed_dim), default_initializer=zeros_
)
self.add_parameter("cls_token", self.cls_token)
self.patch_pos = self.create_parameter(
shape=(1, num_patches + 1, embed_dim), default_initializer=zeros_
)
self.add_parameter("patch_pos", self.patch_pos)
self.pixel_pos = self.create_parameter(
shape=(1, in_dim, new_patch_size, new_patch_size),
default_initializer=zeros_,
)
self.add_parameter("pixel_pos", self.pixel_pos)
self.pos_drop = nn.Dropout(p=drop_rate)
# stochastic depth decay rule
dpr = np.linspace(0, drop_path_rate, depth)
blocks = []
for i in range(depth):
blocks.append(
Block(
dim=embed_dim,
in_dim=in_dim,
num_pixel=num_pixel,
num_heads=num_heads,
in_num_head=in_num_head,
mlp_ratio=mlp_ratio,
qkv_bias=qkv_bias,
drop=drop_rate,
attn_drop=attn_drop_rate,
drop_path=dpr[i],
norm_layer=norm_layer,
)
)
self.blocks = nn.LayerList(blocks)
self.norm = norm_layer(embed_dim)
if class_dim > 0:
self.head = nn.Linear(embed_dim, class_dim)
trunc_normal_(self.cls_token)
trunc_normal_(self.patch_pos)
trunc_normal_(self.pixel_pos)
self.apply(self._init_weights)
def _init_weights(self, m):
if isinstance(m, nn.Linear):
trunc_normal_(m.weight)
if isinstance(m, nn.Linear) and m.bias is not None:
zeros_(m.bias)
elif isinstance(m, nn.LayerNorm):
zeros_(m.bias)
ones_(m.weight)
def forward_features(self, x):
B = x.shape[0]
pixel_embed = self.pixel_embed(x, self.pixel_pos)
patch_embed = self.norm2_proj(
self.proj(self.norm1_proj(pixel_embed.reshape((B, self.num_patches, -1))))
)
patch_embed = paddle.concat(
(self.cls_token.expand((B, -1, -1)), patch_embed), axis=1
)
patch_embed = patch_embed + self.patch_pos
patch_embed = self.pos_drop(patch_embed)
for blk in self.blocks:
pixel_embed, patch_embed = blk(pixel_embed, patch_embed)
patch_embed = self.norm(patch_embed)
return patch_embed[:, 0]
def forward(self, x):
x = self.forward_features(x)
if self.class_dim > 0:
x = self.head(x)
return x
def tnt_s(pretrained=False, return_transforms=False, **kwargs):
model = TNT(
patch_size=16,
embed_dim=384,
in_dim=24,
depth=12,
num_heads=6,
in_num_head=4,
qkv_bias=False,
**kwargs,
)
if pretrained:
model = load_model(model, urls["tnt_s"])
if return_transforms:
return model, transforms
else:
return model