-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathft_getminmax.m
559 lines (513 loc) · 22.5 KB
/
ft_getminmax.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
function [ zmin, zmax] = ft_getminmax(cfg, data)
%function [cfg] = ft_singleplotTFR(cfg, data)
% FT_SINGLEPLOTTFR plots the time-frequency representation of power of a
% single channel or the average over multiple channels.
%
% Use as
% ft_singleplotTFR(cfg,data)
%
% The input freq structure should be a a time-frequency representation of
% power or coherence that was computed using the FT_FREQANALYSIS function.
%
% The configuration can have the following parameters:
% cfg.parameter = field to be plotted on z-axis, e.g. 'powspcrtrm' (default depends on data.dimord)
% cfg.maskparameter = field in the data to be used for masking of data
% (not possible for mean over multiple channels, or when input contains multiple subjects
% or trials)
% cfg.maskstyle = style used to masking, 'opacity', 'saturation', 'outline' or 'colormix' (default = 'opacity')
% use 'saturation' or 'outline' when saving to vector-format (like *.eps) to avoid all sorts of image-problems
% cfg.maskalpha = alpha value between 0 (transparant) and 1 (opaque) used for masking areas dictated by cfg.maskparameter (default = 1)
% cfg.masknans = 'yes' or 'no' (default = 'yes')
% cfg.xlim = 'maxmin' or [xmin xmax] (default = 'maxmin')
% cfg.ylim = 'maxmin' or [ymin ymax] (default = 'maxmin')
% cfg.zlim = plotting limits for color dimension, 'maxmin', 'maxabs', 'zeromax', 'minzero', or [zmin zmax] (default = 'maxmin')
% cfg.baseline = 'yes', 'no' or [time1 time2] (default = 'no'), see FT_FREQBASELINE
% cfg.baselinetype = 'absolute', 'relative', 'relchange' or 'db' (default = 'absolute')
% cfg.trials = 'all' or a selection given as a 1xN vector (default = 'all')
% cfg.channel = Nx1 cell-array with selection of channels (default = 'all'),
% see FT_CHANNELSELECTION for details
% cfg.title = string, title of plot
% cfg.refchannel = name of reference channel for visualising connectivity, can be 'gui'
% cfg.fontsize = font size of title (default = 8)
% cfg.hotkeys = enables hotkeys (leftarrow/rightarrow/uparrow/downarrow/pageup/pagedown/m) for dynamic zoom and translation (ctrl+) of the axes and color limits
% cfg.colormap = any sized colormap, see COLORMAP
% cfg.colorbar = 'yes', 'no' (default = 'yes')
% cfg.interactive = Interactive plot 'yes' or 'no' (default = 'yes')
% In a interactive plot you can select areas and produce a new
% interactive plot when a selected area is clicked. Multiple areas
% can be selected by holding down the SHIFT key.
% cfg.renderer = 'painters', 'zbuffer', ' opengl' or 'none' (default = [])
% cfg.directionality = '', 'inflow' or 'outflow' specifies for
% connectivity measures whether the inflow into a
% node, or the outflow from a node is plotted. The
% (default) behavior of this option depends on the dimor
% of the input data (see below).
%
% For the plotting of directional connectivity data the cfg.directionality
% option determines what is plotted. The default value and the supported
% functionality depend on the dimord of the input data. If the input data
% is of dimord 'chan_chan_XXX', the value of directionality determines
% whether, given the reference channel(s), the columns (inflow), or rows
% (outflow) are selected for plotting. In this situation the default is
% 'inflow'. Note that for undirected measures, inflow and outflow should
% give the same output. If the input data is of dimord 'chancmb_XXX', the
% value of directionality determines whether the rows in data.labelcmb are
% selected. With 'inflow' the rows are selected if the refchannel(s) occur in
% the right column, with 'outflow' the rows are selected if the
% refchannel(s) occur in the left column of the labelcmb-field. Default in
% this case is '', which means that all rows are selected in which the
% refchannel(s) occur. This is to robustly support linearly indexed
% undirected connectivity metrics. In the situation where undirected
% connectivity measures are linearly indexed, specifying 'inflow' or
% 'outflow' can result in unexpected behavior.
%
% See also FT_SINGLEPLOTER, FT_MULTIPLOTER, FT_MULTIPLOTTFR, FT_TOPOPLOTER, FT_TOPOPLOTTFR
% Copyright (C) 2005-2017, F.C. Donders Centre
%
% This file is part of FieldTrip, see http://www.fieldtriptoolbox.org
% for the documentation and details.
%
% FieldTrip is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% FieldTrip is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with FieldTrip. If not, see <http://www.gnu.org/licenses/>.
%
% $Id$
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% DEVELOPERS NOTE: This code is organized in a similar fashion for multiplot/singleplot/topoplot
% and for ER/TFR and should remain consistent over those 6 functions.
% Section 1: general cfg handling that is independent from the data
% Section 2: data handling, this also includes converting bivariate (chan_chan and chancmb) into univariate data
% Section 3: select the data to be plotted and determine min/max range
% Section 4: do the actual plotting
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%% Section 1: general cfg handling that is independent from the data
% these are used by the ft_preamble/ft_postamble function and scripts
ft_revision = '$Id$';
ft_nargin = nargin;
ft_nargout = nargout;
% do the general setup of the function
ft_defaults
ft_preamble init
ft_preamble debug
ft_preamble provenance
ft_preamble trackconfig
% the ft_abort variable is set to true or false in ft_preamble_init
if ft_abort
return
end
% check if the input data is valid for this function
data = ft_checkdata(data, 'datatype', 'freq');
% check if the input cfg is valid for this function
cfg = ft_checkconfig(cfg, 'unused', {'cohtargetchannel'});
cfg = ft_checkconfig(cfg, 'renamed', {'matrixside', 'directionality'});
cfg = ft_checkconfig(cfg, 'renamedval', {'zlim', 'absmax', 'maxabs'});
cfg = ft_checkconfig(cfg, 'renamedval', {'directionality', 'feedforward', 'outflow'});
cfg = ft_checkconfig(cfg, 'renamedval', {'directionality', 'feedback', 'inflow'});
cfg = ft_checkconfig(cfg, 'renamed', {'channelindex', 'channel'});
cfg = ft_checkconfig(cfg, 'renamed', {'channelname', 'channel'});
cfg = ft_checkconfig(cfg, 'renamed', {'cohrefchannel', 'refchannel'});
cfg = ft_checkconfig(cfg, 'renamed', {'zparam', 'parameter'});
cfg = ft_checkconfig(cfg, 'deprecated', {'xparam', 'yparam'});
% Set the defaults
cfg.baseline = ft_getopt(cfg, 'baseline', 'no');
cfg.baselinetype = ft_getopt(cfg, 'baselinetype', 'absolute');
cfg.trials = ft_getopt(cfg, 'trials', 'all', 1);
cfg.xlim = ft_getopt(cfg, 'xlim', 'maxmin');
cfg.ylim = ft_getopt(cfg, 'ylim', 'maxmin');
cfg.zlim = ft_getopt(cfg, 'zlim', 'maxmin');
cfg.fontsize = ft_getopt(cfg, 'fontsize', 8);
cfg.colorbar = ft_getopt(cfg, 'colorbar', 'yes');
cfg.interactive = ft_getopt(cfg, 'interactive', 'yes');
cfg.hotkeys = ft_getopt(cfg, 'hotkeys', 'yes');
cfg.renderer = ft_getopt(cfg, 'renderer', []);
cfg.maskalpha = ft_getopt(cfg, 'maskalpha', 1);
cfg.maskparameter = ft_getopt(cfg, 'maskparameter', []);
cfg.maskstyle = ft_getopt(cfg, 'maskstyle', 'opacity');
cfg.channel = ft_getopt(cfg, 'channel', 'all');
cfg.title = ft_getopt(cfg, 'title', []);
cfg.masknans = ft_getopt(cfg, 'masknans', 'yes');
cfg.directionality = ft_getopt(cfg, 'directionality', []);
cfg.figurename = ft_getopt(cfg, 'figurename', []);
cfg.parameter = ft_getopt(cfg, 'parameter', 'powspctrm');
% this is needed for the figure title and correct labeling of graphcolor later on
if nargin>1
if isfield(cfg, 'dataname')
if iscell(cfg.dataname)
dataname = cfg.dataname{1};
else
dataname = cfg.dataname;
end
else
if ~isempty(inputname(2))
dataname = inputname(2);
else
dataname = ['data' num2str(1, '%02d')];
end
end
else % data provided through cfg.inputfile
dataname = cfg.inputfile;
end
%% Section 2: data handling, this also includes converting bivariate (chan_chan and chancmb) into univariate data
hastime = isfield(data, 'time');
hasfreq = isfield(data, 'freq');
assert((hastime && hasfreq), 'please use ft_singleplotER for time-only or frequency-only data');
xparam = 'time';
yparam = 'freq';
% check whether rpt/subj is present and remove if necessary
dimord = getdimord(data, cfg.parameter);
dimtok = tokenize(dimord, '_');
hasrpt = any(ismember(dimtok, {'rpt' 'subj'}));
if ~hasrpt
assert(isequal(cfg.trials, 'all') || isequal(cfg.trials, 1), 'incorrect specification of cfg.trials for data without repetitions');
else
assert(~isempty(cfg.trials), 'empty specification of cfg.trials for data with repetitions');
end
% parse cfg.channel
if isfield(cfg, 'channel') && isfield(data, 'label')
cfg.channel = ft_channelselection(cfg.channel, data.label);
elseif isfield(cfg, 'channel') && isfield(data, 'labelcmb')
cfg.channel = ft_channelselection(cfg.channel, unique(data.labelcmb(:)));
end
% Apply baseline correction:
if ~strcmp(cfg.baseline, 'no')
% keep mask-parameter if it is set
if ~isempty(cfg.maskparameter)
tempmask = data.(cfg.maskparameter);
end
data = ft_freqbaseline(cfg, data);
% put mask-parameter back if it is set
if ~isempty(cfg.maskparameter)
data.(cfg.maskparameter) = tempmask;
end
end
% channels should NOT be selected and averaged here, since a topoplot might follow in interactive mode
tmpcfg = keepfields(cfg, {'showcallinfo', 'trials'});
if hasrpt
tmpcfg.avgoverrpt = 'yes';
else
tmpcfg.avgoverrpt = 'no';
end
tmpvar = data;
[data] = ft_selectdata(tmpcfg, data);
% restore the provenance information and put back cfg.channel
tmpchannel = cfg.channel;
[cfg, data] = rollback_provenance(cfg, data);
cfg.channel = tmpchannel;
if isfield(tmpvar, cfg.maskparameter) && ~isfield(data, cfg.maskparameter)
% the mask parameter is not present after ft_selectdata, because it is
% not included in all input arguments. Make the same selection and copy
% it over
tmpvar = ft_selectdata(tmpcfg, tmpvar);
data.(cfg.maskparameter) = tmpvar.(cfg.maskparameter);
end
clear tmpvar tmpcfg dimord dimtok hastime hasfreq hasrpt
% ensure that the preproc specific options are located in the cfg.preproc
% substructure, but also ensure that the field 'refchannel' remains at the
% highest level in the structure. This is a little hack by JM because the field
% refchannel can relate to connectivity or to an EEg reference.
if isfield(cfg, 'refchannel'), refchannelincfg = cfg.refchannel; cfg = rmfield(cfg, 'refchannel'); end
cfg = ft_checkconfig(cfg, 'createsubcfg', {'preproc'});
if exist('refchannelincfg', 'var'), cfg.refchannel = refchannelincfg; end
if ~isempty(cfg.preproc)
% preprocess the data, i.e. apply filtering, baselinecorrection, etc.
fprintf('applying preprocessing options\n');
if ~isfield(cfg.preproc, 'feedback')
cfg.preproc.feedback = cfg.interactive;
end
data = ft_preprocessing(cfg.preproc, data);
end
% Handle the bivariate case
dimord = getdimord(data, cfg.parameter);
if startsWith(dimord, 'chan_chan_') || startsWith(dimord, 'chancmb_')
% convert the bivariate data to univariate and call this plotting function again
cfg.originalfunction = 'ft_singleplotTFR';
cfg.trials = 'all'; % trial selection has been taken care off
bivariate_common(cfg, data);
return
end
% Apply channel-type specific scaling
tmpcfg = keepfields(cfg, {'parameter', 'chanscale', 'ecgscale', 'eegscale', 'emgscale', 'eogscale', 'gradscale', 'magscale', 'megscale', 'mychan', 'mychanscale'});
[data] = chanscale_common(tmpcfg, data);
%% Section 3: select the data to be plotted and determine min/max range
% Take the subselection of channels that is contained in the layout, this is the same in all datasets
[selchan] = match_str(data.label, cfg.channel);
% Get physical min/max range of x, i.e. time
if strcmp(cfg.xlim, 'maxmin')
xmin = min(data.(xparam));
xmax = max(data.(xparam));
else
xmin = cfg.xlim(1);
xmax = cfg.xlim(2);
end
% Get the index of the nearest bin
xminindx = nearest(data.(xparam), xmin);
xmaxindx = nearest(data.(xparam), xmax);
xmin = data.(xparam)(xminindx);
xmax = data.(xparam)(xmaxindx);
selx = xminindx:xmaxindx;
xval = data.(xparam)(selx);
% Get physical min/max range of y, i.e. frequency
if strcmp(cfg.ylim, 'maxmin')
ymin = min(data.(yparam));
ymax = max(data.(yparam));
else
ymin = cfg.ylim(1);
ymax = cfg.ylim(2);
end
% Get the index of the nearest bin
yminindx = nearest(data.(yparam), ymin);
ymaxindx = nearest(data.(yparam), ymax);
ymin = data.(yparam)(yminindx);
ymax = data.(yparam)(ymaxindx);
sely = yminindx:ymaxindx;
yval = data.(yparam)(sely);
% test if X and Y are linearly spaced (to within 10^-12): % FROM UIMAGE
dx = min(diff(xval)); % smallest interval for X
dy = min(diff(yval)); % smallest interval for Y
evenx = all(abs(diff(xval)/dx-1)<1e-12); % true if X is linearly spaced
eveny = all(abs(diff(yval)/dy-1)<1e-12); % true if Y is linearly spaced
if ~evenx || ~eveny
ft_warning('(one of the) axis is/are not evenly spaced, but plots are made as if axis are linear')
end
% masking is only possible for evenly spaced axis
if strcmp(cfg.masknans, 'yes') && (~evenx || ~eveny)
ft_warning('(one of the) axis are not evenly spaced -> nans cannot be masked out -> cfg.masknans is set to ''no'';')
cfg.masknans = 'no';
end
% the usual data is chan_freq_time, but other dimords should also work
dimtok = tokenize(dimord, '_');
datamatrix = data.(cfg.parameter);
[c, ia, ib] = intersect(dimtok, {'chan', yparam, xparam});
datamatrix = permute(datamatrix, ia);
datamatrix = datamatrix(selchan, sely, selx);
if ~isempty(cfg.maskparameter)
maskmatrix = data.(cfg.maskparameter)(selchan, sely, selx);
if cfg.maskalpha ~= 1
maskmatrix( maskmatrix) = 1;
maskmatrix(~maskmatrix) = cfg.maskalpha;
end
else
% create an Nx0x0 matrix
maskmatrix = zeros(length(selchan), 0, 0);
end
%% Section 4: do the actual plotting
% cla
% hold on
zval = mean(datamatrix, 1); % over channels
zval = reshape(zval, size(zval,2), size(zval,3));
mask = squeeze(mean(maskmatrix, 1)); % over channels
% Get physical z-axis range (color axis):
if strcmp(cfg.zlim, 'maxmin')
zmin = nanmin(zval(:));
zmax = nanmax(zval(:));
elseif strcmp(cfg.zlim, 'maxabs')
zmin = -nanmax(abs(zval(:)));
zmax = nanmax(abs(zval(:)));
elseif strcmp(cfg.zlim, 'zeromax')
zmin = 0;
zmax = nanmax(zval(:));
elseif strcmp(cfg.zlim, 'minzero')
zmin = nanmin(zval(:));
zmax = 0;
else
zmin = cfg.zlim(1);
zmax = cfg.zlim(2);
end
% % Draw the data and mask NaN's if requested
% if isequal(cfg.masknans, 'yes') && isempty(cfg.maskparameter)
% nans_mask = ~isnan(zval);
% mask = double(nans_mask);
% ft_plot_matrix(xval, yval, zval, 'clim', [zmin zmax], 'tag', 'cip', 'highlightstyle', cfg.maskstyle, 'highlight', mask)
% elseif isequal(cfg.masknans, 'yes') && ~isempty(cfg.maskparameter)
% nans_mask = ~isnan(zval);
% mask = mask .* nans_mask;
% mask = double(mask);
% ft_plot_matrix(xval, yval, zval, 'clim', [zmin zmax], 'tag', 'cip', 'highlightstyle', cfg.maskstyle, 'highlight', mask)
% elseif isequal(cfg.masknans, 'no') && ~isempty(cfg.maskparameter)
% mask = double(mask);
% ft_plot_matrix(xval, yval, zval, 'clim', [zmin zmax], 'tag', 'cip', 'highlightstyle', cfg.maskstyle, 'highlight', mask)
% else
% ft_plot_matrix(xval, yval, zval, 'clim', [zmin zmax], 'tag', 'cip')
% end
%
% % set colormap
% if isfield(cfg, 'colormap')
% if ~isnumeric(cfg.colormap)
% cfg.colormap = colormap(cfg.colormap);
% end
% if size(cfg.colormap,2)~=3
% ft_error('colormap must be a Nx3 matrix');
% else
% set(gcf, 'colormap', cfg.colormap);
% end
% end
%
% % Set renderer if specified
% if ~isempty(cfg.renderer)
% set(gcf, 'renderer', cfg.renderer)
% end
%
% axis xy
%
% if isequal(cfg.colorbar, 'yes')
% % tag the colorbar so we know which axes are colorbars
% %colorbar('tag', 'ft-colorbar');
% narrow_colorbar()
% end
%
% % Set callback to adjust color axis
% if strcmp('yes', cfg.hotkeys)
% % Attach data and cfg to figure and attach a key listener to the figure
% set(gcf, 'KeyPressFcn', {@key_sub, xmin, xmax, ymin, ymax, zmin, zmax})
% end
%
% % Create axis title containing channel name(s) and channel number(s):
% if ~isempty(cfg.title)
% t = cfg.title;
% else
% if length(cfg.channel) == 1
% t = [char(cfg.channel) ' / ' num2str(selchan) ];
% else
% t = sprintf('mean(%0s)', join_str(', ', cfg.channel));
% end
% end
% title(t, 'fontsize', cfg.fontsize);
%
% % set the figure window title, add channel labels if number is small
% if isempty(get(gcf, 'Name'))
% if length(selchan) < 5
% chans = join_str(', ', cfg.channel);
% else
% chans = '<multiple channels>';
% end
% if isempty(cfg.figurename)
% set(gcf, 'Name', sprintf('%d: %s: %s (%s)', double(gcf), mfilename, dataname, chans));
% set(gcf, 'NumberTitle', 'off');
% else
% set(gcf, 'name', cfg.figurename);
% set(gcf, 'NumberTitle', 'off');
% end
% end
%
% axis tight
% hold off
%
% % Make the figure interactive
% if strcmp(cfg.interactive, 'yes')
% % add the cfg/data information to the figure under identifier linked to this axis
% ident = ['axh' num2str(round(sum(clock.*1e6)))]; % unique identifier for this axis
% set(gca, 'tag',ident);
% info = guidata(gcf);
% info.(ident).dataname = dataname;
% info.(ident).cfg = cfg;
% info.(ident).data = data;
% guidata(gcf, info);
% set(gcf, 'WindowButtonUpFcn', {@ft_select_range, 'multiple', false, 'callback', {@select_topoplotTFR}, 'event', 'WindowButtonUpFcn'});
% set(gcf, 'WindowButtonDownFcn', {@ft_select_range, 'multiple', false, 'callback', {@select_topoplotTFR}, 'event', 'WindowButtonDownFcn'});
% set(gcf, 'WindowButtonMotionFcn', {@ft_select_range, 'multiple', false, 'callback', {@select_topoplotTFR}, 'event', 'WindowButtonMotionFcn'});
% end
%
% % add a menu to the figure, but only if the current figure does not have subplots
% % also, delete any possibly existing previous menu, this is safe because delete([]) does nothing
% delete(findobj(gcf, 'type', 'uimenu', 'label', 'FieldTrip'));
% if numel(findobj(gcf, 'type', 'axes', '-not', 'tag', 'ft-colorbar')) <= 1
% ftmenu = uimenu(gcf, 'Label', 'FieldTrip');
% uimenu(ftmenu, 'Label', 'Show pipeline', 'Callback', {@menu_pipeline, cfg});
% uimenu(ftmenu, 'Label', 'About', 'Callback', @menu_about);
% end
%
% % do the general cleanup and bookkeeping at the end of the function
% ft_postamble debug
% ft_postamble trackconfig
% ft_postamble previous data
% ft_postamble provenance
%
% if ~nargout
% % don't return anything
% clear cfg
% end
%
%
% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% % SUBFUNCTION which is called after selecting a time range
% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% function select_topoplotTFR(range, varargin)
% % fetch cfg/data based on axis indentifier given as tag
% ident = get(gca, 'tag');
% info = guidata(gcf);
% cfg = info.(ident).cfg;
% data = info.(ident).data;
% if ~isempty(range)
% cfg = removefields(cfg, 'inputfile'); % the reading has already been done and varargin contains the data
% cfg = removefields(cfg, 'showlabels'); % this is not allowed in topoplotER
% cfg.trials = 'all'; % trial selection has already been taken care of
% cfg.baseline = 'no'; % make sure the next function does not apply a baseline correction again
% cfg.channel = 'all'; % make sure the topo displays all channels, not just the ones in this singleplot
% cfg.comment = 'auto';
% cfg.dataname = info.(ident).dataname; % put data name in here, this cannot be resolved by other means
% cfg.xlim = range(1:2);
% cfg.ylim = range(3:4);
% fprintf('selected cfg.xlim = [%f %f]\n', cfg.xlim(1), cfg.xlim(2));
% fprintf('selected cfg.ylim = [%f %f]\n', cfg.ylim(1), cfg.ylim(2));
% % ensure that the new figure appears at the same position
% f = figure('Position', get(gcf, 'Position'));
% ft_topoplotTFR(cfg, data);
% end
%
% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% % SUBFUNCTION which handles hot keys in the current plot
% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% function key_sub(handle, eventdata, varargin)
% xlimits = xlim;
% ylimits = ylim;
% climits = caxis;
% incr_x = abs(xlimits(2) - xlimits(1)) /10;
% incr_y = abs(ylimits(2) - ylimits(1)) /10;
% incr_c = abs(climits(2) - climits(1)) /10;
%
% if length(eventdata.Modifier) == 1 && strcmp(eventdata.Modifier{:}, 'control')
% % TRANSLATE by 10%
% switch eventdata.Key
% case 'pageup'
% caxis([min(caxis)+incr_c max(caxis)+incr_c]);
% case 'pagedown'
% caxis([min(caxis)-incr_c max(caxis)-incr_c]);
% case 'leftarrow'
% xlim([xlimits(1)+incr_x xlimits(2)+incr_x])
% case 'rightarrow'
% xlim([xlimits(1)-incr_x xlimits(2)-incr_x])
% case 'uparrow'
% ylim([ylimits(1)-incr_y ylimits(2)-incr_y])
% case 'downarrow'
% ylim([ylimits(1)+incr_y ylimits(2)+incr_y])
% end % switch
% else
% % ZOOM by 10%
% switch eventdata.Key
% case 'pageup'
% caxis([min(caxis)-incr_c max(caxis)+incr_c]);
% case 'pagedown'
% caxis([min(caxis)+incr_c max(caxis)-incr_c]);
% case 'leftarrow'
% xlim([xlimits(1)-incr_x xlimits(2)+incr_x])
% case 'rightarrow'
% xlim([xlimits(1)+incr_x xlimits(2)-incr_x])
% case 'uparrow'
% ylim([ylimits(1)-incr_y ylimits(2)+incr_y])
% case 'downarrow'
% ylim([ylimits(1)+incr_y ylimits(2)-incr_y])
% case 'm'
% xlim([varargin{1} varargin{2}])
% ylim([varargin{3} varargin{4}])
% caxis([varargin{5} varargin{6}]);
% end % switch
% end % if