|
| 1 | +#include "RotateSampleRefFrame.hpp" |
| 2 | + |
| 3 | +#include "simplnx/Utilities/DataGroupUtilities.hpp" |
| 4 | +#include "simplnx/Utilities/ImageRotationUtilities.hpp" |
| 5 | +#include "simplnx/Utilities/ParallelAlgorithmUtilities.hpp" |
| 6 | +#include "simplnx/Utilities/ParallelTaskAlgorithm.hpp" |
| 7 | + |
| 8 | +#include <Eigen/Dense> |
| 9 | + |
| 10 | +using namespace nx::core; |
| 11 | + |
| 12 | +namespace |
| 13 | +{ |
| 14 | +using RotationRepresentationType = RotateSampleRefFrame::RotationRepresentation; |
| 15 | + |
| 16 | +constexpr float32 k_Threshold = 0.01f; |
| 17 | + |
| 18 | +const Eigen::Vector3f k_XAxis = Eigen::Vector3f::UnitX(); |
| 19 | +const Eigen::Vector3f k_YAxis = Eigen::Vector3f::UnitY(); |
| 20 | +const Eigen::Vector3f k_ZAxis = Eigen::Vector3f::UnitZ(); |
| 21 | + |
| 22 | +#if 0 |
| 23 | +void DetermineMinMax(const Matrix3fR& rotationMatrix, const FloatVec3& spacing, usize col, usize row, usize plane, float32& xMin, float32& xMax, float32& yMin, float32& yMax, float32& zMin, |
| 24 | + float32& zMax) |
| 25 | +{ |
| 26 | + Eigen::Vector3f coords(static_cast<float32>(col) * spacing[0], static_cast<float32>(row) * spacing[1], static_cast<float32>(plane) * spacing[2]); |
| 27 | + |
| 28 | + Eigen::Vector3f newCoords = rotationMatrix * coords; |
| 29 | + |
| 30 | + xMin = std::min(newCoords[0], xMin); |
| 31 | + xMax = std::max(newCoords[0], xMax); |
| 32 | + |
| 33 | + yMin = std::min(newCoords[1], yMin); |
| 34 | + yMax = std::max(newCoords[1], yMax); |
| 35 | + |
| 36 | + zMin = std::min(newCoords[2], zMin); |
| 37 | + zMax = std::max(newCoords[2], zMax); |
| 38 | +} |
| 39 | + |
| 40 | +float32 CosBetweenVectors(const Eigen::Vector3f& vectorA, const Eigen::Vector3f& vectorB) |
| 41 | +{ |
| 42 | + float32 normA = vectorA.norm(); |
| 43 | + float32 normB = vectorB.norm(); |
| 44 | + |
| 45 | + if(normA == 0.0f || normB == 0.0f) |
| 46 | + { |
| 47 | + return 1.0f; |
| 48 | + } |
| 49 | + |
| 50 | + return vectorA.dot(vectorB) / (normA * normB); |
| 51 | +} |
| 52 | + |
| 53 | +float32 DetermineSpacing(const FloatVec3& spacing, const Eigen::Vector3f& axisNew) |
| 54 | +{ |
| 55 | + float32 xAngle = std::abs(CosBetweenVectors(k_XAxis, axisNew)); |
| 56 | + float32 yAngle = std::abs(CosBetweenVectors(k_YAxis, axisNew)); |
| 57 | + float32 zAngle = std::abs(CosBetweenVectors(k_ZAxis, axisNew)); |
| 58 | + |
| 59 | + std::array<float32, 3> axes = {xAngle, yAngle, zAngle}; |
| 60 | + |
| 61 | + auto result = std::max_element(axes.cbegin(), axes.cend()); |
| 62 | + |
| 63 | + usize index = std::distance(axes.cbegin(), result); |
| 64 | + |
| 65 | + return spacing[index]; |
| 66 | +} |
| 67 | + |
| 68 | +RotateArgs CreateRotateArgs(const ImageGeom& imageGeom, const Matrix3fR& rotationMatrix) |
| 69 | +{ |
| 70 | + const SizeVec3 origDims = imageGeom.getDimensions(); |
| 71 | + const FloatVec3 spacing = imageGeom.getSpacing(); |
| 72 | + |
| 73 | + float32 xMin = std::numeric_limits<float32>::max(); |
| 74 | + float32 xMax = std::numeric_limits<float32>::min(); |
| 75 | + float32 yMin = std::numeric_limits<float32>::max(); |
| 76 | + float32 yMax = std::numeric_limits<float32>::min(); |
| 77 | + float32 zMin = std::numeric_limits<float32>::max(); |
| 78 | + float32 zMax = std::numeric_limits<float32>::min(); |
| 79 | + |
| 80 | + const std::vector<std::array<usize, 3>> coords{{0, 0, 0}, |
| 81 | + {origDims[0] - 1, 0, 0}, |
| 82 | + {0, origDims[1] - 1, 0}, |
| 83 | + {origDims[0] - 1, origDims[1] - 1, 0}, |
| 84 | + {0, 0, origDims[2] - 1}, |
| 85 | + {origDims[0] - 1, 0, origDims[2] - 1}, |
| 86 | + {0, origDims[1] - 1, origDims[2] - 1}, |
| 87 | + {origDims[0] - 1, origDims[1] - 1, origDims[2] - 1}}; |
| 88 | + |
| 89 | + for(const auto& item : coords) |
| 90 | + { |
| 91 | + DetermineMinMax(rotationMatrix, spacing, item[0], item[1], item[2], xMin, xMax, yMin, yMax, zMin, zMax); |
| 92 | + } |
| 93 | + |
| 94 | + Eigen::Vector3f xAxisNew = rotationMatrix * k_XAxis; |
| 95 | + Eigen::Vector3f yAxisNew = rotationMatrix * k_YAxis; |
| 96 | + Eigen::Vector3f zAxisNew = rotationMatrix * k_ZAxis; |
| 97 | + |
| 98 | + float32 xResNew = DetermineSpacing(spacing, xAxisNew); |
| 99 | + float32 yResNew = DetermineSpacing(spacing, yAxisNew); |
| 100 | + float32 zResNew = DetermineSpacing(spacing, zAxisNew); |
| 101 | + |
| 102 | + ImageGeom::MeshIndexType xpNew = static_cast<int64>(std::nearbyint((xMax - xMin) / xResNew) + 1); |
| 103 | + ImageGeom::MeshIndexType ypNew = static_cast<int64>(std::nearbyint((yMax - yMin) / yResNew) + 1); |
| 104 | + ImageGeom::MeshIndexType zpNew = static_cast<int64>(std::nearbyint((zMax - zMin) / zResNew) + 1); |
| 105 | + |
| 106 | + RotateArgs params; |
| 107 | + |
| 108 | + params.xp = static_cast<int64>(origDims[0]); |
| 109 | + params.xRes = spacing[0]; |
| 110 | + params.yp = static_cast<int64>(origDims[1]); |
| 111 | + params.yRes = spacing[1]; |
| 112 | + params.zp = static_cast<int64>(origDims[2]); |
| 113 | + params.zRes = spacing[2]; |
| 114 | + |
| 115 | + params.xpNew = static_cast<int64>(xpNew); |
| 116 | + params.xResNew = xResNew; |
| 117 | + params.xMinNew = xMin; |
| 118 | + params.ypNew = static_cast<int64>(ypNew); |
| 119 | + params.yResNew = yResNew; |
| 120 | + params.yMinNew = yMin; |
| 121 | + params.zpNew = static_cast<int64>(zpNew); |
| 122 | + params.zResNew = zResNew; |
| 123 | + params.zMinNew = zMin; |
| 124 | + |
| 125 | + return params; |
| 126 | +} |
| 127 | + |
| 128 | +template <typename K> |
| 129 | +bool closeEnough(const K& a, const K& b, const K& epsilon = std::numeric_limits<K>::epsilon()) |
| 130 | +{ |
| 131 | + return (epsilon > fabs(a - b)); |
| 132 | +} |
| 133 | + |
| 134 | +constexpr RotationRepresentationType CastIndexToRotationRepresentation(uint64 index) |
| 135 | +{ |
| 136 | + switch(index) |
| 137 | + { |
| 138 | + case to_underlying(RotationRepresentationType::AxisAngle): { |
| 139 | + return RotationRepresentationType::AxisAngle; |
| 140 | + } |
| 141 | + case to_underlying(RotationRepresentationType::RotationMatrix): { |
| 142 | + return RotationRepresentationType::RotationMatrix; |
| 143 | + } |
| 144 | + default: { |
| 145 | + throw std::runtime_error(fmt::format("RotateSampleRefFrameFilter: Failed to cast index {} to RotationRepresentation", index)); |
| 146 | + } |
| 147 | + } |
| 148 | +} |
| 149 | + |
| 150 | +Result<Matrix3fR> ConvertAxisAngleToRotationMatrix(const std::vector<float32>& pRotationValue) |
| 151 | +{ |
| 152 | + Matrix3fR transformationMatrix; |
| 153 | + |
| 154 | + // Convert Degrees to Radians for the last element |
| 155 | + const float rotAngle = pRotationValue[3] * Constants::k_PiOver180F; |
| 156 | + // Ensure the axis part is normalized |
| 157 | + FloatVec3 normalizedAxis(pRotationValue[0], pRotationValue[1], pRotationValue[2]); |
| 158 | + MatrixMath::Normalize3x1<float32>(normalizedAxis.data()); |
| 159 | + |
| 160 | + const float cosTheta = cos(rotAngle); |
| 161 | + const float oneMinusCosTheta = 1 - cosTheta; |
| 162 | + const float sinTheta = sin(rotAngle); |
| 163 | + const float l = normalizedAxis[0]; |
| 164 | + const float m = normalizedAxis[1]; |
| 165 | + const float n = normalizedAxis[2]; |
| 166 | + |
| 167 | + // First Row: |
| 168 | + transformationMatrix(0, 0) = l * l * (oneMinusCosTheta) + cosTheta; |
| 169 | + transformationMatrix(0, 1) = m * l * (oneMinusCosTheta) - (n * sinTheta); |
| 170 | + transformationMatrix(0, 2) = n * l * (oneMinusCosTheta) + (m * sinTheta); |
| 171 | + |
| 172 | + // Second Row: |
| 173 | + transformationMatrix(1, 0) = l * m * (oneMinusCosTheta) + (n * sinTheta); |
| 174 | + transformationMatrix(1, 1) = m * m * (oneMinusCosTheta) + cosTheta; |
| 175 | + transformationMatrix(1, 2) = n * m * (oneMinusCosTheta) - (l * sinTheta); |
| 176 | + |
| 177 | + // Third Row: |
| 178 | + transformationMatrix(2, 0) = l * n * (oneMinusCosTheta) - (m * sinTheta); |
| 179 | + transformationMatrix(2, 1) = m * n * (oneMinusCosTheta) + (l * sinTheta); |
| 180 | + transformationMatrix(2, 2) = n * n * (oneMinusCosTheta) + cosTheta; |
| 181 | + |
| 182 | + return {transformationMatrix}; |
| 183 | +} |
| 184 | + |
| 185 | +Result<Matrix3fR> ConvertRotationTableToRotationMatrix(const std::vector<std::vector<float64>>& rotationMatrixTable) |
| 186 | +{ |
| 187 | + if(rotationMatrixTable.size() != 3) |
| 188 | + { |
| 189 | + return MakeErrorResult<Matrix3fR>(-45004, "Rotation Matrix must be 3 x 3"); |
| 190 | + } |
| 191 | + |
| 192 | + for(const auto& row : rotationMatrixTable) |
| 193 | + { |
| 194 | + if(row.size() != 3) |
| 195 | + { |
| 196 | + return MakeErrorResult<Matrix3fR>(-45005, "Rotation Matrix must be 3 x 3"); |
| 197 | + } |
| 198 | + } |
| 199 | + Matrix3fR rotationMatrix; |
| 200 | + const usize numTableRows = rotationMatrixTable.size(); |
| 201 | + const usize numTableCols = rotationMatrixTable[0].size(); |
| 202 | + for(size_t rowIndex = 0; rowIndex < numTableRows; rowIndex++) |
| 203 | + { |
| 204 | + std::vector<double> row = rotationMatrixTable[rowIndex]; |
| 205 | + for(size_t colIndex = 0; colIndex < numTableCols; colIndex++) |
| 206 | + { |
| 207 | + rotationMatrix(rowIndex, colIndex) = static_cast<float>(row[colIndex]); |
| 208 | + } |
| 209 | + } |
| 210 | + |
| 211 | + float32 determinant = rotationMatrix.determinant(); |
| 212 | + |
| 213 | + if(!closeEnough(determinant, 1.0f, k_Threshold)) |
| 214 | + { |
| 215 | + return MakeErrorResult<Matrix3fR>(-45006, fmt::format("Rotation Matrix must have a determinant of 1 (is {})", determinant)); |
| 216 | + } |
| 217 | + |
| 218 | + Matrix3fR transpose = rotationMatrix.transpose(); |
| 219 | + Matrix3fR inverse = rotationMatrix.inverse(); |
| 220 | + |
| 221 | + if(!transpose.isApprox(inverse, k_Threshold)) |
| 222 | + { |
| 223 | + return MakeErrorResult<Matrix3fR>(-45007, "Rotation Matrix's inverse and transpose must be equal"); |
| 224 | + } |
| 225 | + |
| 226 | + return {rotationMatrix}; |
| 227 | +} |
| 228 | +#endif |
| 229 | + |
| 230 | +// Result<Matrix3fR> ComputeRotationMatrix(const Arguments& args) |
| 231 | +//{ |
| 232 | +// auto rotationRepresentationIndex = args.value<uint64>(RotateSampleRefFrameFilter::k_RotationRepresentation_Key); |
| 233 | +// |
| 234 | +// RotationRepresentationType rotationRepresentation = CastIndexToRotationRepresentation(rotationRepresentationIndex); |
| 235 | +// |
| 236 | +// switch(rotationRepresentation) |
| 237 | +// { |
| 238 | +// case RotationRepresentationType::AxisAngle: { |
| 239 | +// auto pRotationValue = args.value<std::vector<float32>>(RotateSampleRefFrameFilter::k_RotationAxisAngle_Key); |
| 240 | +// return ConvertAxisAngleToRotationMatrix(pRotationValue); |
| 241 | +// } |
| 242 | +// case RotationRepresentationType::RotationMatrix: { |
| 243 | +// auto rotationMatrixTable = args.value<DynamicTableParameter::ValueType>(RotateSampleRefFrameFilter::k_RotationMatrix_Key); |
| 244 | +// return ConvertRotationTableToRotationMatrix(rotationMatrixTable); |
| 245 | +// } |
| 246 | +// } |
| 247 | +// } |
| 248 | + |
| 249 | +} // namespace |
| 250 | + |
| 251 | +// ----------------------------------------------------------------------------- |
| 252 | +RotateSampleRefFrame::RotateSampleRefFrame(DataStructure& dataStructure, const IFilter::MessageHandler& mesgHandler, const std::atomic_bool& shouldCancel, RotateSampleRefFrameInputValues* inputValues) |
| 253 | +: m_DataStructure(dataStructure) |
| 254 | +, m_InputValues(inputValues) |
| 255 | +, m_ShouldCancel(shouldCancel) |
| 256 | +, m_MessageHandler(mesgHandler) |
| 257 | +{ |
| 258 | +} |
| 259 | + |
| 260 | +// ----------------------------------------------------------------------------- |
| 261 | +RotateSampleRefFrame::~RotateSampleRefFrame() noexcept = default; |
| 262 | + |
| 263 | +// ----------------------------------------------------------------------------- |
| 264 | +void RotateSampleRefFrame::updateProgress(const std::string& message) |
| 265 | +{ |
| 266 | + m_MessageHandler(IFilter::Message::Type::Info, message); |
| 267 | +} |
| 268 | + |
| 269 | +// ----------------------------------------------------------------------------- |
| 270 | +const std::atomic_bool& RotateSampleRefFrame::getCancel() |
| 271 | +{ |
| 272 | + return m_ShouldCancel; |
| 273 | +} |
| 274 | + |
| 275 | +// ----------------------------------------------------------------------------- |
| 276 | +Result<> RotateSampleRefFrame::operator()() |
| 277 | +{ |
| 278 | + auto& srcImageGeom = m_DataStructure.getDataRefAs<ImageGeom>(m_InputValues->SourceGeometryPath); |
| 279 | + auto& destImageGeom = m_DataStructure.getDataRefAs<ImageGeom>(m_InputValues->DestGeometryPath); |
| 280 | + |
| 281 | + ImageRotationUtilities::Matrix4fR rotationMatrix; |
| 282 | + |
| 283 | + switch(static_cast<RotationRepresentationType>(m_InputValues->RotationRepresentationIndex)) |
| 284 | + { |
| 285 | + case RotationRepresentationType::AxisAngle: { |
| 286 | + rotationMatrix = ImageRotationUtilities::GenerateRotationTransformationMatrix(m_InputValues->RotationAxisAngle); |
| 287 | + break; |
| 288 | + } |
| 289 | + case RotationRepresentationType::RotationMatrix: { |
| 290 | + rotationMatrix = ImageRotationUtilities::GenerateManualTransformationMatrix(m_InputValues->RotationMatrixTable); |
| 291 | + break; |
| 292 | + } |
| 293 | + } |
| 294 | + |
| 295 | + ImageRotationUtilities::RotateArgs rotateArgs = ImageRotationUtilities::CreateRotationArgs(srcImageGeom, rotationMatrix); |
| 296 | + |
| 297 | + auto selectedCellDataChildren = GetAllChildArrayDataPaths(m_DataStructure, srcImageGeom.getCellDataPath()); |
| 298 | + auto selectedCellArrays = selectedCellDataChildren.has_value() ? selectedCellDataChildren.value() : std::vector<DataPath>{}; |
| 299 | + |
| 300 | + ImageRotationUtilities::FilterProgressCallback filterProgressCallback(m_MessageHandler, m_ShouldCancel); |
| 301 | + |
| 302 | + // The actual rotating of the dataStructure arrays is done in parallel where parallel here |
| 303 | + // refers to the cropping of each DataArray being done on a separate thread. |
| 304 | + ParallelTaskAlgorithm taskRunner; |
| 305 | + taskRunner.setParallelizationEnabled(true); |
| 306 | + const DataPath srcCelLDataAMPath = srcImageGeom.getCellDataPath(); |
| 307 | + const auto& srcCellDataAM = srcImageGeom.getCellDataRef(); |
| 308 | + |
| 309 | + const DataPath destCellDataAMPath = destImageGeom.getCellDataPath(); |
| 310 | + |
| 311 | + for(const auto& [dataId, srcDataObject] : srcCellDataAM) |
| 312 | + { |
| 313 | + if(m_ShouldCancel) |
| 314 | + { |
| 315 | + return {}; |
| 316 | + } |
| 317 | + |
| 318 | + const auto* srcDataArray = m_DataStructure.getDataAs<IDataArray>(srcCelLDataAMPath.createChildPath(srcDataObject->getName())); |
| 319 | + auto* destDataArray = m_DataStructure.getDataAs<IDataArray>(destCellDataAMPath.createChildPath(srcDataObject->getName())); |
| 320 | + m_MessageHandler(fmt::format("Rotating Volume || Copying Data Array {}", srcDataObject->getName())); |
| 321 | + |
| 322 | + ExecuteParallelFunction<ImageRotationUtilities::RotateImageGeometryWithNearestNeighbor>(srcDataArray->getDataType(), taskRunner, srcDataArray, destDataArray, rotateArgs, rotationMatrix, |
| 323 | + m_InputValues->SliceBySlice, &filterProgressCallback); |
| 324 | + } |
| 325 | + |
| 326 | + taskRunner.wait(); // This will spill over if the number of DataArrays to process does not divide evenly by the number of threads. |
| 327 | + |
| 328 | + return {}; |
| 329 | +} |
0 commit comments