-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathseq2seq.py
executable file
·588 lines (519 loc) · 30.3 KB
/
seq2seq.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
# Copyright 2015 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
# Copyright 2017, Center of Speech and Language of Tsinghua University.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Library for creating sequence-to-sequence models in TensorFlow.
Sequence-to-sequence recurrent neural networks can learn complex functions
that map input sequences to output sequences. These models yield very good
results on a number of tasks, such as speech recognition, parsing, machine
translation, or even constructing automated replies to emails.
Here is an overview of functions available in this module.
* Full sequence-to-sequence models.
- embedding_attention_seq2seq:
* Decoders
- attention_decoder: A decoder that uses the attention mechanism.
* Losses.
- sequence_loss: Loss for a sequence model returning average log-perplexity.
- sequence_loss_by_example: As above, but not averaging over all examples.
* model_with_buckets: A convenience function to create models with bucketing
"""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from six.moves import zip
from tensorflow.python.framework import dtypes
from tensorflow.python.framework import ops
from tensorflow.python.ops import array_ops
from tensorflow.python.ops import embedding_ops
from tensorflow.python.ops import math_ops
from tensorflow.python.ops import nn_ops
from tensorflow.python.ops import variable_scope
from tensorflow.python.util import nest
from tensorflow.python.ops import init_ops
import rnn_cell
import rnn
linear = rnn_cell._linear2
SEED = 123
def _extract_argmax_and_embed(embedding,
num_symbols,
output_projection=None,
update_embedding=True):
"""Get a loop_function that does beam search, extracts the previous symbol and embeds it.
Args:
embedding: embedding tensor for symbols.
num_symbols: the size of target vocabulary
output_projection: None or a pair (W, B). If provided, each fed previous
output will first be multiplied by W and added B.
update_embedding: Boolean; if False, the gradients will not propagate
through the embeddings.
Returns:
A loop function.
"""
def loop_function(prev, prev_probs, beam_size, _):
if output_projection is not None:
prev = nn_ops.xw_plus_b(
prev, output_projection[0], output_projection[1])
prev = math_ops.log(nn_ops.softmax(prev))
prev = nn_ops.bias_add(array_ops.transpose(prev), prev_probs) # num_symbols*BEAM_SIZE
prev = array_ops.transpose(prev)
prev = array_ops.expand_dims(array_ops.reshape(prev, [-1]), 0) # 1*(BEAM_SIZE*num_symbols)
probs, prev_symbolb = nn_ops.top_k(prev, beam_size)
probs = array_ops.squeeze(probs, [0]) # BEAM_SIZE,
prev_symbolb = array_ops.squeeze(prev_symbolb, [0]) # BEAM_SIZE,
index = prev_symbolb // num_symbols
prev_symbol = prev_symbolb % num_symbols
# Note that gradients will not propagate through the second parameter of embedding_lookup.
emb_prev = embedding_ops.embedding_lookup(embedding, prev_symbol)
if not update_embedding:
emb_prev = array_ops.stop_gradient(emb_prev)
return emb_prev, probs, index, prev_symbol
return loop_function
def attention_decoder(encoder_mask, decoder_inputs, initial_state, attention_states, cell,
beam_size, output_size=None, num_layers=1, loop_function=None,
dtype=dtypes.float32, scope=None,
initial_state_attention=False
):
"""RNN decoder with attention for the sequence-to-sequence model.
In this context "attention" means that, during decoding, the RNN can look up
information in the additional tensor attention_states, and it does this by
focusing on a few entries from the tensor. This model has proven to yield
especially good results in a number of sequence-to-sequence tasks. This
implementation is based on http://arxiv.org/abs/1409.0473 (see below for
details).
Args:
encoder_mask: the mask of encoder inputs [batch_size x attn_length].
decoder_inputs: A list of 2D Tensors [batch_size x input_size].
initial_state: 2D Tensor [batch_size x cell.state_size].
attention_states: 3D Tensor [batch_size x attn_length x attn_size].
cell: rnn_cell.RNNCell defining the cell function and size.
beam_size: the beam size of beam search
output_size: Size of the output vectors; if None, we use cell.output_size.
loop_function: When decoding, this function will be applied to i-th output
in order to generate i+1-th input. The generation is by beam search.
dtype: The dtype to use for the RNN initial state (default: tf.float32).
scope: VariableScope for the created subgraph; default: "attention_decoder".
initial_state_attention: If False (default), initial attentions are zero.
If True, initialize the attentions from the initial state.
Returns:
A tuple of the form (outputs, state, symbols), where:
outputs: A list of the same length as decoder_inputs of 2D Tensors of
shape [batch_size x output_size]. These represent the generated outputs.
Output i is computed from input i (which is either the i-th element
of decoder_inputs or loop_function(output {i-1}, i)) as follows.
state: The state of each decoder cell the final time-step.
It is a 2D Tensor of shape [batch_size x cell.state_size].
symbols: When training, it is []; when decoding, it is the best translation
generated by beam search.
Raises:
ValueError: when shapes of attention_states are not set,
or input size cannot be inferred from the input.
"""
if not decoder_inputs:
raise ValueError("Must provide at least 1 input to attention decoder.")
if not attention_states.get_shape()[1:2].is_fully_defined():
raise ValueError("Shape[1] and [2] of attention_states must be known: %s"
% attention_states.get_shape())
if output_size is None:
output_size = cell.output_size
with variable_scope.variable_scope(scope or "attention_decoder"):
batch_size = array_ops.shape(decoder_inputs[0])[0] # Needed for reshaping.
attn_length = attention_states.get_shape()[1].value
attn_size = attention_states.get_shape()[2].value
state_size = initial_state.get_shape()[1].value
attention_vec_size = attn_size // 2 # Size of query vectors for attention.
hidden = array_ops.reshape(
attention_states, [-1, attn_length, 1, attn_size])
# compute the initial hidden state of decoder
initial_state = math_ops.tanh(linear(initial_state, state_size, False,
weight_initializer=init_ops.random_normal_initializer(0, 0.01, seed=SEED)))
with variable_scope.variable_scope(scope or "attention"):
k = variable_scope.get_variable("AttnW",
[1, 1, attn_size, attention_vec_size],
initializer=init_ops.random_normal_initializer(0, 0.001, seed=SEED))
hidden_features = nn_ops.conv2d(hidden, k, [1, 1, 1, 1], "SAME")
v = variable_scope.get_variable("AttnV",
[attention_vec_size],
initializer=init_ops.constant_initializer(0.0))
def attention(query, scope=None):
"""Put attention masks on hidden using hidden_features and query."""
with variable_scope.variable_scope(scope or "attention"):
ds = [] # Results of attention reads will be stored here.
if nest.is_sequence(query): # If the query is a tuple, flatten it.
query_list = nest.flatten(query)
for q in query_list: # Check that ndims == 2 if specified.
ndims = q.get_shape().ndims
if ndims:
assert ndims == 2
query = array_ops.concat(query_list, 1)
with variable_scope.variable_scope("AttnU"):
y = linear(query, attention_vec_size, False,
weight_initializer=init_ops.random_normal_initializer(0, 0.001, seed=SEED))
y = array_ops.reshape(y, [-1, 1, 1, attention_vec_size])
# the additive attention is computed by v^T * tanh(...).
s = math_ops.reduce_sum(
v * math_ops.tanh(hidden_features + y), [2, 3])
s = array_ops.transpose(array_ops.transpose(s) - math_ops.reduce_max(s, [1]))
# sofxmax with mask
s = math_ops.exp(s)
s = math_ops.to_float(encoder_mask) * s
a = array_ops.transpose(array_ops.transpose(s) / math_ops.reduce_sum(s, [1]))
d = math_ops.reduce_sum(
array_ops.reshape(a, [-1, attn_length, 1, 1]) * hidden,
[1, 2])
ds.append(array_ops.reshape(d, [-1, attn_size]))
return ds
outputs = []
output = None
state = initial_state
out_state = array_ops.split(state, num_layers, 1)[-1]
prev = None
symbols = []
prev_probs = [0]
batch_attn_size = array_ops.stack([batch_size, attn_size])
attns = [array_ops.zeros(batch_attn_size, dtype=dtype)]
for a in attns: # Ensure the second shape of attention vectors is set.
a.set_shape([None, attn_size])
for i, inp in enumerate(decoder_inputs):
if i > 0:
variable_scope.get_variable_scope().reuse_variables()
# If loop_function is set, we use it instead of decoder_inputs.
if loop_function is not None and prev is not None:
with variable_scope.variable_scope("loop_function", reuse=True):
inp, prev_probs, index, prev_symbol = loop_function(prev, prev_probs, beam_size, i)
out_state = array_ops.gather(out_state, index) # update prev state
state = array_ops.gather(state, index) # update prev state
attns = [array_ops.gather(attn, index) for attn in attns] # update prev attens
for j, output in enumerate(outputs):
outputs[j] = array_ops.gather(output, index) # update prev outputs
for j, symbol in enumerate(symbols):
symbols[j] = array_ops.gather(symbol, index) # update prev symbols
symbols.append(prev_symbol)
# Run the attention mechanism.
if i > 0 or (i == 0 and initial_state_attention):
attns = attention(out_state, scope="attention")
# Run the RNN.
cinp = array_ops.concat([inp, attns[0]], 1) # concatenate next input and the context vector
out_state, state = cell(cinp, state)
with variable_scope.variable_scope("AttnOutputProjection"):
output = linear([out_state] + [cinp], output_size, False)
output = array_ops.reshape(output, [-1, output_size // 2, 2])
output = math_ops.reduce_max(output, 2) # maxout
if loop_function is not None:
prev = output
outputs.append(output)
if loop_function is not None:
# handle the last symbol
inp, prev_probs, index, prev_symbol = loop_function(prev, prev_probs, beam_size, i + 1)
out_state = array_ops.gather(out_state, index) # update prev state
state = array_ops.gather(state, index) # update prev state
for j, output in enumerate(outputs):
outputs[j] = array_ops.gather(output, index) # update prev outputs
for j, symbol in enumerate(symbols):
symbols[j] = array_ops.gather(symbol, index) # update prev symbols
symbols.append(prev_symbol)
# output the best result of beam search
for k, symbol in enumerate(symbols):
symbols[k] = array_ops.gather(symbol, 0)
out_state = array_ops.expand_dims(array_ops.gather(out_state, 0), 0)
state = array_ops.expand_dims(array_ops.gather(state, 0), 0)
for j, output in enumerate(outputs):
outputs[j] = array_ops.expand_dims(array_ops.gather(output, 0), 0) # update prev outputs
return outputs, state, symbols
def embedding_attention_decoder(encoder_mask, decoder_inputs, initial_state, attention_states,
cell, num_symbols, embedding_size, beam_size,
output_size=None, output_projection=None, num_layers=1,
feed_previous=False,
update_embedding_for_previous=True,
dtype=dtypes.float32, scope=None,
initial_state_attention=False):
"""RNN decoder with embedding and attention and a pure-decoding option.
Args:
decoder_inputs: A list of 1D batch-sized int32 Tensors (decoder inputs).
initial_state: 2D Tensor [batch_size x cell.state_size].
attention_states: 3D Tensor [batch_size x attn_length x attn_size].
cell: rnn_cell.RNNCell defining the cell function.
num_symbols: Integer, how many symbols come into the embedding.
embedding_size: Integer, the length of the embedding vector for each symbol.
beam_size: the beam size of beam search
output_size: Size of the output vectors; if None, use output_size.
output_projection: None or a pair (W, B) of output projection weights and
biases; W has shape [output_size x num_symbols] and B has shape
[num_symbols]; if provided and feed_previous=True, each fed previous
output will first be multiplied by W and added B.
feed_previous: Boolean; if True, only the first of decoder_inputs will be
used (the "GO" symbol), and all other decoder inputs will be generated by:
next = embedding_lookup(embedding, top_k(previous_output)),
In effect, this implements a beam search decoder.
If False, decoder_inputs are used as given (the standard decoder case).
update_embedding_for_previous: Boolean; if False and feed_previous=True,
only the embedding for the first symbol of decoder_inputs (the "GO"
symbol) will be updated by back propagation. Embeddings for the symbols
generated from the decoder itself remain unchanged. This parameter has
no effect if feed_previous=False.
dtype: The dtype to use for the RNN initial states (default: tf.float32).
scope: VariableScope for the created subgraph; defaults to
"embedding_attention_decoder".
initial_state_attention: If False (default), initial attentions are zero.
If True, initialize the attentions from the initial state.
Returns:
A tuple of the form (outputs, state, symbols), where:
outputs: A list of the same length as decoder_inputs of 2D Tensors with
shape [batch_size x output_size] containing the generated outputs.
state: The state of each decoder cell at the final time-step.
It is a 2D Tensor of shape [batch_size x cell.state_size].
symbols: When training, it is []; when decoding, it is the best translation
generated by beam search.
Raises:
ValueError: When output_projection has the wrong shape.
"""
if output_size is None:
output_size = cell.output_size
if output_projection is not None:
proj_biases = ops.convert_to_tensor(output_projection[1], dtype=dtype)
proj_biases.get_shape().assert_is_compatible_with([num_symbols])
with variable_scope.variable_scope(scope or "embedding_attention_decoder"):
# word embeddings of target words
embedding = variable_scope.get_variable("embedding",
[num_symbols, embedding_size],
dtype=dtype,
initializer=init_ops.random_normal_initializer(0, 0.01, seed=SEED))
# loop function for generating
loop_function = _extract_argmax_and_embed(
embedding,
num_symbols,
output_projection,
update_embedding_for_previous) if feed_previous else None
emb_inp = [
embedding_ops.embedding_lookup(embedding, i) for i in decoder_inputs]
return attention_decoder(encoder_mask,
emb_inp, initial_state, attention_states, cell,
beam_size,
output_size=output_size,
num_layers=num_layers,
loop_function=loop_function,
initial_state_attention=initial_state_attention)
def embedding_attention_seq2seq(encoder_inputs, encoder_mask, decoder_inputs, cell,
num_encoder_symbols, num_decoder_symbols,
embedding_size, beam_size,
output_projection=None, num_layers=1,
feed_previous=False, dtype=dtypes.float32,
scope=None, initial_state_attention=True):
"""Embedding sequence-to-sequence model with attention.
This model first embeds encoder_inputs by a newly created embedding (of shape
[num_encoder_symbols x input_size]). Then it runs an bidirectional-RNN to encode
embedded encoder_inputs into a state vector. It keeps the outputs of this
bidirectional-RNN at every step to use for attention later. Next, it embeds decoder_inputs
by another newly created embedding (of shape [num_decoder_symbols x
input_size]). Then it runs attention decoder, initialized with the last
encoder state, on embedded decoder_inputs and attending to encoder outputs.
Args:
encoder_inputs: A list of 1D int32 Tensors of shape [batch_size].
encoder_mask: the mask of encoder inputs that label where are PADs.
decoder_inputs: A list of 1D int32 Tensors of shape [batch_size].
cell: rnn_cell.RNNCell defining the cell function and size.
num_encoder_symbols: Integer; number of symbols on the encoder side.
num_decoder_symbols: Integer; number of symbols on the decoder side.
embedding_size: Integer, the length of the embedding vector for each symbol.
output_projection: None or a pair (W, B) of output projection weights and
biases; W has shape [output_size x num_decoder_symbols] and B has
shape [num_decoder_symbols]; if provided and feed_previous=True, each
fed previous output will first be multiplied by W and added B.
feed_previous: Boolean or scalar Boolean Tensor; if True, only the first
of decoder_inputs will be used (the "GO" symbol), and all other decoder
inputs will be taken from previous outputs (as in embedding_rnn_decoder).
If False, decoder_inputs are used as given (the standard decoder case).
dtype: The dtype of the initial RNN state (default: tf.float32).
scope: VariableScope for the created subgraph; defaults to
"embedding_attention_seq2seq".
initial_state_attention: If False (default), initial attentions are zero.
If True, initialize the attentions from the initial state and attention
states.
Returns:
A tuple of the form (outputs, state, symbols), where:
outputs: A list of the same length as decoder_inputs of 2D Tensors with
shape [batch_size x num_decoder_symbols] containing the generated
outputs.
state: The state of each decoder cell at the final time-step.
It is a 2D Tensor of shape [batch_size x cell.state_size].
symbols: When training, it is []; when decoding, it is the best translation
generated by beam search.
"""
with variable_scope.variable_scope(scope or "embedding_attention_seq2seq"):
# word embeddings of source words
embedding = variable_scope.get_variable(
"embedding", [num_encoder_symbols, embedding_size],
dtype=dtype,
initializer=init_ops.random_normal_initializer(0, 0.01, seed=SEED))
# wrap encoder cell with embedding
encoder_cell = rnn_cell.EmbeddingWrapper(
cell, embedding_classes=num_encoder_symbols,
embedding_size=embedding_size, embedding=embedding)
# get the sentence lengths of source sentences
encoder_lens = math_ops.reduce_sum(encoder_mask, [1])
# encode source sentences with a bidirectional_rnn encoder
encoder_outputs, _, encoder_state = rnn.bidirectional_rnn(
encoder_cell, encoder_cell, encoder_inputs, sequence_length=encoder_lens, dtype=dtype)
# First calculate a concatenation of encoder outputs.
top_states = [array_ops.reshape(e, [-1, 1, 2 * cell.output_size])
for e in encoder_outputs]
attention_states = array_ops.concat(top_states, 1)
# Decoder.
output_size = None
if output_projection is None:
cell = rnn_cell.OutputProjectionWrapper(cell, num_decoder_symbols)
output_size = num_decoder_symbols
return embedding_attention_decoder(encoder_mask, decoder_inputs, encoder_state, attention_states, cell,
num_decoder_symbols, embedding_size, beam_size=beam_size,
output_size=output_size, output_projection=output_projection,
num_layers=num_layers, feed_previous=feed_previous,
initial_state_attention=initial_state_attention)
def sequence_loss_by_example(logits, targets, weights,
average_across_timesteps=True,
softmax_loss_function=None, name=None):
"""Weighted cross-entropy loss for a sequence of logits (per example).
Args:
logits: List of 2D Tensors of shape [batch_size x num_decoder_symbols].
targets: List of 1D batch-sized int32 Tensors of the same length as logits.
weights: List of 1D batch-sized float-Tensors of the same length as logits.
average_across_timesteps: If set, divide the returned cost by the total
label weight.
softmax_loss_function: Function (inputs-batch, labels-batch) -> loss-batch
to be used instead of the standard softmax (the default if this is None).
name: Optional name for this operation, default: "sequence_loss_by_example".
Returns:
1D batch-sized float Tensor: The log-perplexity for each sequence.
Raises:
ValueError: If len(logits) is different from len(targets) or len(weights).
"""
if len(targets) != len(logits) or len(weights) != len(logits):
raise ValueError("Lengths of logits, weights, and targets must be the same "
"%d, %d, %d." % (len(logits), len(weights), len(targets)))
with ops.name_scope(name,
"sequence_loss_by_example", logits + targets + weights):
log_perp_list = []
for logit, target, weight in zip(logits, targets, weights):
if softmax_loss_function is None:
target = array_ops.reshape(target, [-1])
crossent = nn_ops.sparse_softmax_cross_entropy_with_logits(
labels=target, logits=logit)
else:
crossent = softmax_loss_function(logit, target)
log_perp_list.append(crossent * weight)
log_perps = math_ops.add_n(log_perp_list)
if average_across_timesteps:
total_size = math_ops.add_n(weights)
total_size += 1e-12 # Just to avoid division by 0 for all-0 weights.
log_perps /= total_size
return log_perps
def sequence_loss(logits, targets, weights,
average_across_timesteps=True, average_across_batch=True,
softmax_loss_function=None, name=None):
"""Weighted cross-entropy loss for a sequence of logits, batch-collapsed.
Args:
logits: List of 2D Tensors of shape [batch_size x num_decoder_symbols].
targets: List of 1D batch-sized int32 Tensors of the same length as logits.
weights: List of 1D batch-sized float-Tensors of the same length as logits.
average_across_timesteps: If set, divide the returned cost by the total
label weight.
average_across_batch: If set, divide the returned cost by the batch size.
softmax_loss_function: Function (inputs-batch, labels-batch) -> loss-batch
to be used instead of the standard softmax (the default if this is None).
name: Optional name for this operation, defaults to "sequence_loss".
Returns:
A scalar float Tensor: The average log-perplexity per symbol (weighted).
Raises:
ValueError: If len(logits) is different from len(targets) or len(weights).
"""
with ops.name_scope(name, "sequence_loss", logits + targets + weights):
cost = math_ops.reduce_sum(sequence_loss_by_example(
logits, targets, weights,
average_across_timesteps=average_across_timesteps,
softmax_loss_function=softmax_loss_function))
if average_across_batch:
batch_size = array_ops.shape(targets[0])[0]
return cost / math_ops.cast(batch_size, dtypes.float32)
else:
return cost
def model_with_buckets(encoder_inputs, encoder_mask, decoder_inputs, targets, weights,
buckets, seq2seq, softmax_loss_function=None,
per_example_loss=False, name=None):
"""Create a sequence-to-sequence model with support for bucketing.
Args:
encoder_inputs: A list of Tensors to feed the encoder; first seq2seq input.
encoder_mask: the mask of encoder inputs that label where are PADs.
decoder_inputs: A list of Tensors to feed the decoder; second seq2seq input.
targets: A list of 1D batch-sized int32 Tensors (desired output sequence).
weights: List of 1D batch-sized float-Tensors to weight the targets.
buckets: A list of pairs of (input size, output size) for each bucket.
seq2seq: A sequence-to-sequence model function
softmax_loss_function: Function (inputs-batch, labels-batch) -> loss-batch
to be used instead of the standard softmax (the default if this is None).
per_example_loss: Boolean. If set, the returned loss will be a batch-sized
tensor of losses for each sequence in the batch. If unset, it will be
a scalar with the averaged loss from all examples.
name: Optional name for this operation, defaults to "model_with_buckets".
Returns:
A tuple of the form (outputs, losses, symbols), where:
outputs: The outputs for each bucket. Its j'th element consists of a list
of 2D Tensors of shape [batch_size x num_decoder_symbols] (jth outputs).
losses: List of scalar Tensors, representing losses for each bucket, or,
if per_example_loss is set, a list of 1D batch-sized float Tensors.
symbols: The final translation result got from beam search
Raises:
ValueError: If length of encoder_inputsut, targets, or weights is smaller
than the largest (last) bucket.
"""
if len(encoder_inputs) < buckets[-1][0]:
raise ValueError("Length of encoder_inputs (%d) must be at least that of la"
"st bucket (%d)." % (len(encoder_inputs), buckets[-1][0]))
if len(targets) < buckets[-1][1]:
raise ValueError("Length of targets (%d) must be at least that of last"
"bucket (%d)." % (len(targets), buckets[-1][1]))
if len(weights) < buckets[-1][1]:
raise ValueError("Length of weights (%d) must be at least that of last"
"bucket (%d)." % (len(weights), buckets[-1][1]))
all_inputs = encoder_inputs + decoder_inputs + targets + weights
losses = []
outputs = []
symbols = [] # to save the output of beam search
with ops.name_scope(name, "model_with_buckets", all_inputs):
for j, bucket in enumerate(buckets):
with variable_scope.variable_scope(variable_scope.get_variable_scope(),
reuse=True if j > 0 else None):
bucket_outputs, _, bucket_symbols = seq2seq(encoder_inputs[:bucket[0]], encoder_mask,
decoder_inputs[:bucket[1]])
outputs.append(bucket_outputs)
symbols.append(bucket_symbols)
if per_example_loss:
losses.append(sequence_loss_by_example(
outputs[-1], targets[:bucket[1]], weights[:bucket[1]],
softmax_loss_function=softmax_loss_function))
else:
losses.append(sequence_loss(
outputs[-1], targets[:bucket[1]], weights[:bucket[1]],
softmax_loss_function=softmax_loss_function))
return outputs, losses, symbols