You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
# After adding your project and instance, configure the Datadog Azure integration to pull additional cloud data such as CPU, Memory, etc.
81
85
azure:
82
86
deployment_type: 'sql_database'
@@ -142,7 +146,7 @@ Create the SQL Server Agent conf file `C:\ProgramData\Datadog\conf.d\sqlserver.d
142
146
init_config:
143
147
instances:
144
148
- dbm: true
145
-
host: '<HOSTNAME>,<SQL_PORT>'
149
+
host: '<HOSTNAME>,<PORT>'
146
150
username: datadog
147
151
password: 'ENC[datadog_user_database_password]'
148
152
connector: adodbapi
@@ -180,7 +184,7 @@ The recommended ODBC driver is [Microsoft ODBC Driver][8]. Starting with Agent 7
180
184
181
185
```yaml
182
186
connector: odbc
183
-
driver: '{ODBC Driver 18 for SQL Server}'
187
+
driver: 'ODBC Driver 18 for SQL Server'
184
188
```
185
189
186
190
Once all Agent configuration is complete, [restart the Datadog Agent][9].
@@ -215,7 +219,7 @@ Create the SQL Server Agent conf file `/etc/datadog-agent/conf.d/sqlserver.d/con
215
219
init_config:
216
220
instances:
217
221
- dbm: true
218
-
host: '<HOSTNAME>,<SQL_PORT>'
222
+
host: '<HOSTNAME>,<PORT>'
219
223
username: datadog
220
224
password: 'ENC[datadog_user_database_password]'
221
225
connector: odbc
@@ -258,15 +262,15 @@ Replace the values to match your account and environment. See the [sample conf f
258
262
259
263
```bash
260
264
export DD_API_KEY=xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
261
-
export DD_AGENT_VERSION=7.51.0
265
+
export DD_AGENT_VERSION=<AGENT_VERSION>
262
266
263
267
docker run -e "DD_API_KEY=${DD_API_KEY}" \
264
268
-v /var/run/docker.sock:/var/run/docker.sock:ro \
265
269
-l com.datadoghq.ad.check_names='["sqlserver"]' \
266
270
-l com.datadoghq.ad.init_configs='[{}]' \
267
271
-l com.datadoghq.ad.instances='[{
268
272
"dbm": true,
269
-
"host": "<HOSTNAME>,<SQL_PORT>",
273
+
"host": "<HOSTNAME>,<PORT>",
270
274
"connector": "odbc",
271
275
"driver": "ODBC Driver 18 for SQL Server",
272
276
"username": "datadog",
@@ -300,9 +304,66 @@ Use the `service` and `env` tags to link your database telemetry to other teleme
300
304
[6]: https://app.datadoghq.com/databases
301
305
{{% /tab %}}
302
306
{{% tab "Kubernetes" %}}
303
-
If you have a Kubernetes cluster, use the [Datadog Cluster Agent][1] for Database Monitoring.
307
+
If you're running a Kubernetes cluster, use the [Datadog Cluster Agent][1] to enable Database Monitoring. If cluster checks aren’t already enabled, [follow these instructions][2] to enable them before proceeding.
304
308
305
-
If cluster checks are not already enabled in your Kubernetes cluster, follow the instructions to [enable cluster checks][2]. You can configure the Cluster Agent either with static files mounted in the Cluster Agent container, or by using Kubernetes service annotations:
309
+
### Operator
310
+
311
+
Follow the steps below to set up the SQL Server integration, using the [Operator instructions in Kubernetes and Integrations][6] as a reference.
312
+
313
+
1. Create or update the `datadog-agent.yaml` file with the following configuration:
314
+
315
+
```yaml
316
+
apiVersion: datadoghq.com/v2alpha1
317
+
kind: DatadogAgent
318
+
metadata:
319
+
name: datadog
320
+
spec:
321
+
global:
322
+
clusterName: <CLUSTER_NAME>
323
+
site: <DD_SITE>
324
+
credentials:
325
+
apiSecret:
326
+
secretName: datadog-agent-secret
327
+
keyName: api-key
328
+
329
+
features:
330
+
clusterChecks:
331
+
enabled: true
332
+
333
+
override:
334
+
nodeAgent:
335
+
image:
336
+
name: agent
337
+
tag: <AGENT_VERSION>
338
+
339
+
clusterAgent:
340
+
extraConfd:
341
+
configDataMap:
342
+
sqlserver.yaml: |-
343
+
cluster_check: true # Make sure to include this flag
344
+
init_config:
345
+
instances:
346
+
- host: <HOSTNAME>,<PORT>
347
+
username: datadog
348
+
password: 'ENC[datadog_user_database_password]'
349
+
connector: 'odbc'
350
+
driver: 'ODBC Driver 18 for SQL Server'
351
+
dbm: true
352
+
# Optional: For additional tags
353
+
tags:
354
+
- 'service:<CUSTOM_SERVICE>'
355
+
- 'env:<CUSTOM_ENV>'
356
+
# After adding your project and instance, configure the Datadog Azure integration to pull additional cloud data such as CPU, Memory, etc.
@@ -353,12 +415,13 @@ cluster_check: true # Make sure to include this flag
353
415
init_config:
354
416
instances:
355
417
- dbm: true
356
-
host: '<HOSTNAME>,<SQL_PORT>'
418
+
host: <HOSTNAME>,<PORT>
357
419
username: datadog
358
420
password: 'ENC[datadog_user_database_password]'
359
-
connector: "odbc"
360
-
driver: '{ODBC Driver 18 for SQL Server}'
361
-
tags: # Optional
421
+
connector: 'odbc'
422
+
driver: 'ODBC Driver 18 for SQL Server'
423
+
# Optional: For additional tags
424
+
tags:
362
425
- 'service:<CUSTOM_SERVICE>'
363
426
- 'env:<CUSTOM_ENV>'
364
427
# After adding your project and instance, configure the Datadog Azure integration to pull additional cloud data such as CPU, Memory, etc.
@@ -371,7 +434,6 @@ instances:
371
434
372
435
Rather than mounting a file, you can declare the instance configuration as a Kubernetes Service. To configure this check for an Agent running on Kubernetes, create a Service in the same namespace as the Datadog Cluster Agent:
Copy file name to clipboardExpand all lines: content/en/database_monitoring/setup_sql_server/gcsql.md
+77-23Lines changed: 77 additions & 23 deletions
Original file line number
Diff line number
Diff line change
@@ -61,7 +61,7 @@ Create the SQL Server Agent conf file `C:\ProgramData\Datadog\conf.d\sqlserver.d
61
61
init_config:
62
62
instances:
63
63
- dbm: true
64
-
host: '<HOSTNAME>,<SQL_PORT>'
64
+
host: '<HOSTNAME>,<PORT>'
65
65
username: datadog
66
66
password: '<PASSWORD>'
67
67
connector: adodbapi
@@ -102,7 +102,7 @@ The recommended ODBC driver is [Microsoft ODBC Driver][8]. Starting with Agent 7
102
102
103
103
```yaml
104
104
connector: odbc
105
-
driver: '{ODBC Driver 18 for SQL Server}'
105
+
driver: 'ODBC Driver 18 for SQL Server'
106
106
```
107
107
108
108
Once all Agent configuration is complete, [restart the Datadog Agent][9].
@@ -137,7 +137,7 @@ Create the SQL Server Agent conf file `/etc/datadog-agent/conf.d/sqlserver.d/con
137
137
init_config:
138
138
instances:
139
139
- dbm: true
140
-
host: '<HOSTNAME>,<SQL_PORT>'
140
+
host: '<HOSTNAME>,<PORT>'
141
141
username: datadog
142
142
password: 'ENC[datadog_user_database_password]'
143
143
connector: odbc
@@ -180,7 +180,7 @@ Replace the values to match your account and environment. See the [sample conf f
180
180
181
181
```bash
182
182
export DD_API_KEY=xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
183
-
export DD_AGENT_VERSION=7.51.0
183
+
export DD_AGENT_VERSION=<AGENT_VERSION>
184
184
185
185
docker run -e "DD_API_KEY=${DD_API_KEY}" \
186
186
-v /var/run/docker.sock:/var/run/docker.sock:ro \
@@ -222,9 +222,66 @@ Use the `service` and `env` tags to link your database telemetry to other teleme
222
222
[6]: https://app.datadoghq.com/databases
223
223
{{% /tab %}}
224
224
{{% tab "Kubernetes" %}}
225
-
If you have a Kubernetes cluster, use the [Datadog Cluster Agent][1] for Database Monitoring.
225
+
If you're using a Kubernetes cluster, use the [Datadog Cluster Agent][1] for Database Monitoring. If cluster checks aren’t already enabled, [follow these instructions][2] to enable them before proceeding..
226
226
227
-
If cluster checks are not already enabled in your Kubernetes cluster, follow the instructions to [enable cluster checks][2]. You can configure the Cluster Agent either with static files mounted in the Cluster Agent container, or by using Kubernetes service annotations:
227
+
### Operator
228
+
229
+
Follow the steps below to set up the SQL Server integration, using the [Operator instructions in Kubernetes and Integrations][6] as a reference.
230
+
231
+
1. Create or update the `datadog-agent.yaml` file with the following configuration:
232
+
233
+
```yaml
234
+
apiVersion: datadoghq.com/v2alpha1
235
+
kind: DatadogAgent
236
+
metadata:
237
+
name: datadog
238
+
spec:
239
+
global:
240
+
clusterName: <CLUSTER_NAME>
241
+
site: <DD_SITE>
242
+
credentials:
243
+
apiSecret:
244
+
secretName: datadog-agent-secret
245
+
keyName: api-key
246
+
247
+
features:
248
+
clusterChecks:
249
+
enabled: true
250
+
251
+
override:
252
+
nodeAgent:
253
+
image:
254
+
name: agent
255
+
tag: <AGENT_VERSION>
256
+
257
+
clusterAgent:
258
+
extraConfd:
259
+
configDataMap:
260
+
sqlserver.yaml: |-
261
+
cluster_check: true # Required for cluster checks
262
+
init_config:
263
+
instances:
264
+
- host: <HOSTNAME>,<PORT>
265
+
username: datadog
266
+
password: 'ENC[datadog_user_database_password]'
267
+
connector: 'odbc'
268
+
driver: 'ODBC Driver 18 for SQL Server'
269
+
dbm: true
270
+
# Optional: For additional tags
271
+
tags:
272
+
- 'service:<CUSTOM_SERVICE>'
273
+
- 'env:<CUSTOM_ENV>'
274
+
# After adding your project and instance, configure the Datadog Google Cloud (GCP) integration to pull additional cloud data such as CPU, Memory, etc.
275
+
gcp:
276
+
project_id: '<PROJECT_ID>'
277
+
instance_id: '<INSTANCE_ID>'
278
+
```
279
+
280
+
2. Apply the changes to the Datadog Operator using the following command:
281
+
282
+
```shell
283
+
kubectl apply -f datadog-agent.yaml
284
+
```
228
285
229
286
### Helm
230
287
@@ -240,15 +297,16 @@ Complete the following steps to install the [Datadog Cluster Agent][1] on your K
240
297
init_config:
241
298
instances:
242
299
- dbm: true
243
-
host: <HOSTNAME>
244
-
port: 1433
300
+
host: <HOSTNAME>,<PORT>
245
301
username: datadog
246
302
password: 'ENC[datadog_user_database_password]'
247
303
connector: 'odbc'
248
-
driver: '{ODBC Driver 18 for SQL Server}'
249
-
tags: # Optional
304
+
driver: 'ODBC Driver 18 for SQL Server'
305
+
# Optional: For additional tags
306
+
tags:
250
307
- 'service:<CUSTOM_SERVICE>'
251
308
- 'env:<CUSTOM_ENV>'
309
+
# After adding your project and instance, configure the Datadog Google Cloud (GCP) integration to pull additional cloud data such as CPU, Memory, etc.
252
310
gcp:
253
311
project_id: '<PROJECT_ID>'
254
312
instance_id: '<INSTANCE_ID>'
@@ -266,10 +324,6 @@ Complete the following steps to install the [Datadog Cluster Agent][1] on your K
266
324
For Windows, append <code>--set targetSystem=windows</code> to the <code>helm install</code> command.
To configure a cluster check with a mounted configuration file, mount the configuration file in the Cluster Agent container on the path: `/conf.d/sqlserver.yaml`:
@@ -279,13 +333,13 @@ cluster_check: true # Make sure to include this flag
279
333
init_config:
280
334
instances:
281
335
- dbm: true
282
-
host: '<HOSTNAME>'
283
-
port: <SQL_PORT>
336
+
host: <HOSTNAME>,<PORT>
284
337
username: datadog
285
338
password: 'ENC[datadog_user_database_password]'
286
-
connector: "odbc"
287
-
driver: '{ODBC Driver 18 for SQL Server}'
288
-
tags: # Optional
339
+
connector: 'odbc'
340
+
driver: 'ODBC Driver 18 for SQL Server'
341
+
# Optional: For additional tags
342
+
tags:
289
343
- 'service:<CUSTOM_SERVICE>'
290
344
- 'env:<CUSTOM_ENV>'
291
345
# After adding your project and instance, configure the Datadog Google Cloud (GCP) integration to pull additional cloud data such as CPU, Memory, etc.
0 commit comments