-
Notifications
You must be signed in to change notification settings - Fork 10
/
Copy pathnew_main.py
229 lines (198 loc) · 8.8 KB
/
new_main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
from __future__ import absolute_import
import sys
from torchvision import transforms
sys.path.append('./')
import argparse
import os
import os.path as osp
import numpy as np
import math
import time
import torch
from torch import nn, optim
from torch.backends import cudnn
from torch.utils.data import DataLoader
import torchvision.transforms as transforms
from config import get_args
from lib.models.model_builder_CTC import ModelBuilder_CTC
from lib.models.model_builder_Attention import ModelBuilder_Att
from lib.models.model_builder_DAN import ModelBuilder_DAN
from lib.datasets.dataset import lmdbDataset, alignCollate, randomSequentialSampler
from lib.datasets.concatdataset import ConcatDataset
from lib.trainers import Trainer
from lib.evaluators import Evaluator
from lib.utils.logging import Logger, TFLogger
from lib.utils.serialization import load_checkpoint
from lib.utils.labelmaps import CTCLabelConverter, AttentionLabelConverter
from lib.utils.alphabets import get_alphabets
def get_data(data_dir, height, width, batch_size, workers, is_train, keep_ratio, alphabets, aug=False, randomSampler=False,num_samples=math.inf):
if isinstance(data_dir, list):
dataset_list = []
for data_dir_ in data_dir:
dataset_list.append(lmdbDataset(alphabets, data_dir_,augmentation=aug,num_samples=num_samples))
dataset = ConcatDataset(dataset_list)
else:
dataset = lmdbDataset(alphabets, data_dir,augmentation=aug,num_samples=num_samples)
print('total image: ', len(dataset))
if randomSampler:
sampler = randomSequentialSampler(dataset, batch_size=batch_size)
shuffle = False
else:
sampler = None
shuffle = True
if is_train:
data_loader = DataLoader(dataset, batch_size=batch_size, num_workers=workers,
shuffle=shuffle, pin_memory=True, drop_last=True,sampler=sampler,
collate_fn=alignCollate(imgH=height, imgW=width, keep_ratio=keep_ratio))
else:
data_loader = DataLoader(dataset, batch_size=batch_size, num_workers=workers,
shuffle=False, pin_memory=True, drop_last=False,
collate_fn=alignCollate(imgH=height, imgW=width, keep_ratio=keep_ratio))
return dataset, data_loader
def main(args):
""" set up random seeds """
np.random.seed(args.seed)
torch.manual_seed(args.seed)
torch.cuda.manual_seed(args.seed)
#torch.cuda.manual_seed_all(args.seed)
cudnn.benchmark = True
torch.backends.cudnn.deterministic = True
args.cuda = args.cuda and torch.cuda.is_available()
""" Set up tensorboard """
if not args.evaluate:
sys.stdout = Logger(osp.join(args.logs_dir, 'log.txt'))
train_tfLogger = TFLogger(osp.join(args.logs_dir, 'train_tensorboard'))
eval_tfLogger = TFLogger(osp.join(args.logs_dir, 'eval_tensorboard'))
""" Set up dataloaders """
args.alphabets = get_alphabets(args.alphabets) # len(6012)
if args.punc:
args.alphabets += " "
print(args.alphabets)
if args.randomsequentialsampler:
randomSampler = True
else:
randomSampler = False
if not args.evaluate:
_, train_loader = \
get_data(args.synthetic_train_data_dir,args.height, args.width,
args.batch_size, args.workers, True, args.keep_ratio,args.alphabets,args.augmentation,randomSampler=randomSampler)
print(f'recognition nums: {len(args.alphabets)+1}')
#print(f'recogniton types:{args.alphabets}')
test_dataset, test_loader = \
get_data(args.test_data_dir, args.height, args.width,
args.batch_size, args.workers, False, args.keep_ratio,args.alphabets,randomSampler=randomSampler,num_samples=10000)
""" Set up model with converter """
if args.decode_type == 'CTC': # CRNN
model = ModelBuilder_CTC(arch=args.arch, rec_num_classes=len(args.alphabets)+1) # +1 for [blank]
converter = CTCLabelConverter(args.alphabets, args.max_len)
elif args.decode_type == 'Attention': # ASTER
model = ModelBuilder_Att(arch=args.arch,rec_num_classes=len(args.alphabets)+3, #+3 for <EOS>, <PAD>, <UNK>
sDim=args.decoder_sdim, attDim=args.attDim,max_len_labels=args.max_len,STN_ON=args.STN_ON)
converter = AttentionLabelConverter(args.alphabets,args.max_len)
elif args.decode_type == 'DAN': # DAN
model = ModelBuilder_DAN(arch=args.arch,rec_num_classes=len(args.alphabets)+3, #+3 for <EOS>, <PAD>, <UNK>
max_len_labels=args.max_len)
converter = AttentionLabelConverter(args.alphabets,args.max_len)
""" Load from checkpoint """
if args.evaluation_metric == 'accuracy' or args.evaluation_metric == 'word_accuracy':
best_res = 0
elif args.evaluation_metric == 'editdistance':
best_res = math.inf
else:
raise ValueError("Unsupported evaluation metric:", args.evaluation_metric)
start_epoch = 0
start_iters = 0
if args.resume:
checkpoint = load_checkpoint(args.resume)
model.load_state_dict(checkpoint['state_dict'])
# compatibility with the epoch-wise evaluation version
try:
start_epoch = checkpoint['epochs']
except:
start_epoch = checkpoint['iters']
best_res = checkpoint['best_res']
print("=> Start iters {} best res {:.1%}"
.format(start_epoch, best_res))
if args.cuda:
device = torch.device("cuda")
model = model.to(device)
#model = nn.DataParallel(model)
""" Set up Evaluator """
evaluator = Evaluator(model, converter, args.evaluation_metric, args.cuda)
""" Only for evaluation """
if args.evaluate:
print('Test on {0}:'.format(args.test_data_dir))
start = time.time()
with torch.no_grad():
evaluator.evaluate(test_loader)
print('it took {0} s.'.format(time.time() - start))
return
""" Set up optimizer(default as adadelta with scheduler) """
# Optimizer
param_groups = model.parameters()
param_groups = filter(lambda p: p.requires_grad, param_groups)
if args.adamdelta:
optimizer = optim.Adadelta(param_groups, lr=args.lr)
print('using adamdelta')
elif args.SGD:
optimizer = optim.SGD(param_groups, lr=args.lr, momentum=args.momentum, weight_decay=args.weight_decay)
print('using SGD')
else:
optimizer = optim.Adam(param_groups, lr=args.lr, weight_decay=args.weight_decay)
print('using adam')
if args.stepLR:
print('MultiStepLR at {}'.format(str(args.stepLR)))
scheduler = optim.lr_scheduler.MultiStepLR(optimizer, milestones=args.stepLR, gamma=0.1)
""" Set up Trainer"""
# Trainer
trainer = Trainer(model,converter, args.evaluation_metric, args.logs_dir,
iters=start_iters, best_res=best_res, grad_clip=args.grad_clip,
use_cuda=args.cuda)
""" Start Training"""
print('\n','-' * 40,'Start Training now','-' * 40)
print('\n','-' * 40,'Evaluate for the first time','-' * 40)
with torch.no_grad():
evaluator.evaluate(test_loader, step=0, tfLogger=eval_tfLogger)
for epoch in range(start_epoch, args.epochs):
current_lr = optimizer.param_groups[0]['lr']
trainer.train(epoch, train_loader, optimizer, current_lr,
train_tfLogger=train_tfLogger,
evaluator=evaluator,
test_loader=test_loader,
eval_tfLogger=eval_tfLogger,
test_dataset=test_dataset)
if args.stepLR:
scheduler.step()
# Final test
print('Test with best model:')
checkpoint = load_checkpoint(osp.join(args.logs_dir+'/weights/', 'model_best.pth.tar'))
model.load_state_dict(checkpoint['state_dict'])
evaluator.evaluate(test_loader)
# Close the tensorboard logger
train_tfLogger.close()
eval_tfLogger.close()
if __name__ == '__main__':
print(sys.argv[1:])
#args = get_args(['--synthetic_train_data_dir', '../text_recognition_datasets/hand_written/lines_youkonge/all', '--test_data_dir', '../text_recognition_datasets/hand_written/lines_youkonge/te', '--batch_size', '32', '--workers', '2', '--height', '192', '--width', '2048', '--arch', 'IAM', '--decode_type', 'DAN', '--max_len', '128', '--epochs', '6', '--alphabets', 'allcases', '--punc', '--padresize', '--evaluation_metric', 'word_accuracy', '--augmentation', 'IAM'])
args = get_args(sys.argv[1:])
if not os.path.exists('./runs'):
os.makedirs(f'./runs/train/', exist_ok=True)
exp_name = 'exp' + str(len(os.listdir('./runs/train'))+1)
# creat file
os.makedirs(f'./runs/train/{exp_name}/', exist_ok=True)
os.makedirs(f'./runs/train/{exp_name}/weights/', exist_ok=True)
args.logs_dir = f'./runs/train/{exp_name}/'
print('\n','-' * 40,'EXPERENCE Name','-' * 40)
print('EXPERENCE Name: ', exp_name)
# save training parameters
args_dict = args.__dict__
print('\n','-' * 40,'Training Configuration','-' * 40)
print(args)
with open(f'./runs/train/{exp_name}/train_config.txt', "w", encoding="utf-8") as f3:
for eachArg, value in args_dict.items():
f3.writelines(eachArg + ' : ' + str(value) + '\n')
# print cuda
print('\n','-' * 40,'GPU','-' * 40)
print('device: ', torch.cuda.get_device_name())
print('\n','-' * 40,'Training Begins Now','-' * 40)
main(args)