You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
Copy file name to clipboardExpand all lines: README.md
+8-2Lines changed: 8 additions & 2 deletions
Display the source diff
Display the rich diff
Original file line number
Diff line number
Diff line change
@@ -5,23 +5,29 @@ AgingNLP aims to develop aging-related NLP resources including NLP algorithms, k
5
5
## Reference
6
6
7
7
### Delirium
8
-
Fu S, Lopes GS, Pagali SR, Thorsteinsdottir B, LeBrasseur NK, Wen A, Liu H, Rocca WA, Olson JE, St. Sauver J, Sohn S. Ascertainment of delirium status using natural language processing from electronic health records. The Journals of Gerontology: Series A. 2022 Mar 1;77(3):524-30.
8
+
Fu S, Lopes GS, Pagali SR, Thorsteinsdottir B, LeBrasseur NK, Wen A, Liu H, Rocca WA, Olson JE, St. Sauver J, Sohn S. Ascertainment of delirium status using natural language processing from electronic health records. The Journals of Gerontology: Series A. 2022 Mar 1;77(3):524-30.
9
+
https://doi.org/10.1093/gerona/glaa275
9
10
10
11
Sauver JS, Fu S, Sohn S, Weston S, Fan C, Olson J, Thorsteinsdottir B, LeBrasseur N, Pagali S, Rocca W, Liu H. Identification of delirium from real-world electronic health record clinical notes. Journal of Clinical and Translational Science. 2023 Jan;7(1):e187.
12
+
https://doi.org/10.1017/cts.2023.610
11
13
12
14
Pagali S, Fu S, Lindroth H, Sohn S, Burton MC, Lapid M. Delirium occurrence and association with outcomes in hospitalized COVID-19 patients. International psychogeriatrics. 2021 Oct;33(10):1105-9.
15
+
https://doi.org/10.1017/S104161022100106X
13
16
14
17
Pagali SR, Kumar R, Fu S, Sohn S, Yousufuddin M. Natural language processing CAM algorithm improves delirium detection compared with conventional methods. American Journal of Medical Quality. 2023 Jan 1;38(1):17-22.
15
-
18
+
https://doi.org/10.1097/JMQ.0000000000000090
16
19
17
20
### Fall
18
21
Fu S, Thorsteinsdottir B, Zhang X, Lopes GS, Pagali SR, LeBrasseur NK, Wen A, Liu H, Rocca WA, Olson JE, Sauver JS. A hybrid model to identify fall occurrence from electronic health records. International journal of medical informatics. 2022 Jun 1;162:104736.
22
+
https://doi.org/10.1016/j.ijmedinf.2022.104736
19
23
20
24
21
25
### Functional Status
22
26
Fu S, Jia H, Vassilaki M, Keloth VK, Dang Y, Zhou Y, Garg M, Petersen RC, St Sauver J, Moon S, Wang L. FedFSA: Hybrid and federated framework for functional status ascertainment across institutions. Journal of Biomedical Informatics. 2024 Apr 1;152:104623.
27
+
https://doi.org/10.1016/j.jbi.2024.104623
23
28
24
29
Fu S, Vassilaki M, Ibrahim OA, Petersen RC, Pagali S, St Sauver J, Moon S, Wang L, Fan JW, Liu H, Sohn S. Quality assessment of functional status documentation in EHRs across different healthcare institutions. Frontiers in Digital Health. 2022 Sep 27;4:958539.
30
+
https://doi.org/10.3389/fdgth.2022.958539
25
31
26
32
### Cognitive-behavioral Symptom
27
33
Liwei Wang, Sunyang Fu, Sunghwan Sohn, Sungrim Moon, Hua Xu, Cui Tao, Jennifer St. Sauver, Ronald C. Peterson, Hongfang Liu, & J. Wilfred Fan. (2022). Development of a general purpose cognitive-behavioral symptom taxonomy. Zenodo. https://doi.org/10.5281/zenodo.7025711
0 commit comments