Skip to content

Commit f7489ac

Browse files
authored
Merge pull request #10 from QuantEcon/review-matplotlib
MAINT: remove %matplotlib inline and contents directive
2 parents 7e3327f + 08eefbb commit f7489ac

15 files changed

+0
-65
lines changed

lectures/additive_functionals.md

Lines changed: 0 additions & 5 deletions
Original file line numberDiff line numberDiff line change
@@ -25,10 +25,6 @@ kernelspec:
2525
```{index} single: Models; Additive functionals
2626
```
2727

28-
```{contents} Contents
29-
:depth: 2
30-
```
31-
3228
In addition to what's in Anaconda, this lecture will need the following libraries:
3329

3430
```{code-cell} ipython3
@@ -78,7 +74,6 @@ import numpy as np
7874
import scipy.linalg as la
7975
import quantecon as qe
8076
import matplotlib.pyplot as plt
81-
%matplotlib inline
8277
from scipy.stats import norm, lognorm
8378
```
8479

lectures/arma.md

Lines changed: 0 additions & 5 deletions
Original file line numberDiff line numberDiff line change
@@ -20,10 +20,6 @@ kernelspec:
2020

2121
# {index}`Covariance Stationary Processes <single: Covariance Stationary Processes>`
2222

23-
```{contents} Contents
24-
:depth: 2
25-
```
26-
2723
In addition to what's in Anaconda, this lecture will need the following libraries:
2824

2925
```{code-cell} ipython
@@ -95,7 +91,6 @@ Let's start with some imports:
9591
```{code-cell} ipython
9692
import numpy as np
9793
import matplotlib.pyplot as plt
98-
%matplotlib inline
9994
import quantecon as qe
10095
```
10196

lectures/classical_filtering.md

Lines changed: 0 additions & 4 deletions
Original file line numberDiff line numberDiff line change
@@ -20,10 +20,6 @@ kernelspec:
2020

2121
# Classical Prediction and Filtering With Linear Algebra
2222

23-
```{contents} Contents
24-
:depth: 2
25-
```
26-
2723
## Overview
2824

2925
This is a sequel to the earlier lecture {doc}`Classical Control with Linear Algebra <lu_tricks>`.

lectures/discrete_dp.md

Lines changed: 0 additions & 5 deletions
Original file line numberDiff line numberDiff line change
@@ -20,10 +20,6 @@ kernelspec:
2020

2121
# {index}`Discrete State Dynamic Programming <single: Discrete State Dynamic Programming>`
2222

23-
```{contents} Contents
24-
:depth: 2
25-
```
26-
2723
In addition to what's in Anaconda, this lecture will need the following libraries:
2824

2925
```{code-cell} ipython
@@ -66,7 +62,6 @@ Let's start with some imports:
6662
```{code-cell} ipython
6763
import numpy as np
6864
import matplotlib.pyplot as plt
69-
%matplotlib inline
7065
import quantecon as qe
7166
import scipy.sparse as sparse
7267
from quantecon import compute_fixed_point

lectures/estspec.md

Lines changed: 0 additions & 5 deletions
Original file line numberDiff line numberDiff line change
@@ -23,10 +23,6 @@ kernelspec:
2323
```{index} single: Spectra; Estimation
2424
```
2525

26-
```{contents} Contents
27-
:depth: 2
28-
```
29-
3026
In addition to what's in Anaconda, this lecture will need the following libraries:
3127

3228
```{code-cell} ipython
@@ -59,7 +55,6 @@ Let's start with some standard imports:
5955
```{code-cell} ipython
6056
import numpy as np
6157
import matplotlib.pyplot as plt
62-
%matplotlib inline
6358
from quantecon import ARMA, periodogram, ar_periodogram
6459
```
6560

lectures/finite_markov.md

Lines changed: 0 additions & 4 deletions
Original file line numberDiff line numberDiff line change
@@ -20,10 +20,6 @@ kernelspec:
2020

2121
# {index}`Finite Markov Chains <single: Finite Markov Chains>`
2222

23-
```{contents} Contents
24-
:depth: 2
25-
```
26-
2723
In addition to what's in Anaconda, this lecture will need the following libraries:
2824

2925
```{code-cell} ipython

lectures/five_preferences.md

Lines changed: 0 additions & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -73,7 +73,6 @@ from numba import njit
7373
:tags: [hide-input]
7474
7575
# Plotting parameters
76-
%matplotlib inline
7776
%config InlineBackend.figure_format='retina'
7877
7978
plt.rc('text', usetex=True)

lectures/linear_algebra.md

Lines changed: 0 additions & 4 deletions
Original file line numberDiff line numberDiff line change
@@ -23,10 +23,6 @@ kernelspec:
2323
```{index} single: Linear Algebra
2424
```
2525

26-
```{contents} Contents
27-
:depth: 2
28-
```
29-
3026
## Overview
3127

3228
Linear algebra is one of the most useful branches of applied mathematics for economists to invest in.

lectures/lu_tricks.md

Lines changed: 0 additions & 5 deletions
Original file line numberDiff line numberDiff line change
@@ -20,10 +20,6 @@ kernelspec:
2020

2121
# Classical Control with Linear Algebra
2222

23-
```{contents} Contents
24-
:depth: 2
25-
```
26-
2723
## Overview
2824

2925
In an earlier lecture [Linear Quadratic Dynamic Programming Problems](https://python-intro.quantecon.org/lqcontrol.html), we have studied how to solve a special
@@ -59,7 +55,6 @@ Let's start with some standard imports:
5955
```{code-cell} ipython
6056
import numpy as np
6157
import matplotlib.pyplot as plt
62-
%matplotlib inline
6358
```
6459

6560
### References

lectures/newton_method.md

Lines changed: 0 additions & 4 deletions
Original file line numberDiff line numberDiff line change
@@ -24,10 +24,6 @@ kernelspec:
2424

2525
# Using Newton's Method to Solve Economic Models
2626

27-
```{contents} Contents
28-
:depth: 2
29-
```
30-
3127
```{seealso}
3228
**GPU:** A version of this lecture which makes use of [jax](https://jax.readthedocs.io) to run the code
3329
on a `GPU` is [available here](https://jax.quantecon.org/newtons_method.html)

0 commit comments

Comments
 (0)