You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
I was successful in getting your code to work on my 2060 laptop after a few tweeks. I just got a tesla M40 card in and am looking at running GPT-J-6 on it using this method. To start though, I thought I'd use the same code with the GPT-NEO-2.7B model to verify that it's working OK. I got the error in the title though when I tried to run it.
Any ideas as to what's going on?
Full error log:
---------------------------------------------------------------------------
RuntimeError Traceback (most recent call last)
<timed exec> in <module>
~\AppData\Roaming\Python\Python37\site-packages\torch\autograd\grad_mode.py in decorate_context(*args, **kwargs)
26 def decorate_context(*args, **kwargs):
27 with self.__class__():
---> 28 return func(*args, **kwargs)
29 return cast(F, decorate_context)
30
~\AppData\Roaming\Python\Python37\site-packages\transformers\generation_utils.py in generate(self, input_ids, max_length, min_length, do_sample, early_stopping, num_beams, temperature, top_k, top_p, repetition_penalty, bad_words_ids, bos_token_id, pad_token_id, eos_token_id, length_penalty, no_repeat_ngram_size, encoder_no_repeat_ngram_size, num_return_sequences, max_time, max_new_tokens, decoder_start_token_id, use_cache, num_beam_groups, diversity_penalty, prefix_allowed_tokens_fn, output_attentions, output_hidden_states, output_scores, return_dict_in_generate, forced_bos_token_id, forced_eos_token_id, remove_invalid_values, synced_gpus, **model_kwargs)
1024 return_dict_in_generate=return_dict_in_generate,
1025 synced_gpus=synced_gpus,
-> 1026 **model_kwargs,
1027 )
1028
~\AppData\Roaming\Python\Python37\site-packages\transformers\generation_utils.py in sample(self, input_ids, logits_processor, stopping_criteria, logits_warper, max_length, pad_token_id, eos_token_id, output_attentions, output_hidden_states, output_scores, return_dict_in_generate, synced_gpus, **model_kwargs)
1533 return_dict=True,
1534 output_attentions=output_attentions,
-> 1535 output_hidden_states=output_hidden_states,
1536 )
1537
~\AppData\Roaming\Python\Python37\site-packages\torch\nn\modules\module.py in _call_impl(self, *input, **kwargs)
1049 if not (self._backward_hooks or self._forward_hooks or self._forward_pre_hooks or _global_backward_hooks
1050 or _global_forward_hooks or _global_forward_pre_hooks):
-> 1051 return forward_call(*input, **kwargs)
1052 # Do not call functions when jit is used
1053 full_backward_hooks, non_full_backward_hooks = [], []
~\AppData\Roaming\Python\Python37\site-packages\transformers\models\gpt_neo\modeling_gpt_neo.py in forward(self, input_ids, past_key_values, attention_mask, token_type_ids, position_ids, head_mask, inputs_embeds, labels, use_cache, output_attentions, output_hidden_states, return_dict)
983 output_attentions=output_attentions,
984 output_hidden_states=output_hidden_states,
--> 985 return_dict=return_dict,
986 )
987 hidden_states = transformer_outputs[0]
~\AppData\Roaming\Python\Python37\site-packages\torch\nn\modules\module.py in _call_impl(self, *input, **kwargs)
1049 if not (self._backward_hooks or self._forward_hooks or self._forward_pre_hooks or _global_backward_hooks
1050 or _global_forward_hooks or _global_forward_pre_hooks):
-> 1051 return forward_call(*input, **kwargs)
1052 # Do not call functions when jit is used
1053 full_backward_hooks, non_full_backward_hooks = [], []
~\AppData\Local\Temp/ipykernel_8288/2499053029.py in new_forward(self, input_ids, past_key_values, attention_mask, token_type_ids, position_ids, head_mask, inputs_embeds, use_cache, output_attentions, output_hidden_states, return_dict)
219 head_mask=head_mask[i],
220 use_cache=use_cache,
--> 221 output_attentions=output_attentions,
222 )
223
~\AppData\Roaming\Python\Python37\site-packages\torch\nn\modules\module.py in _call_impl(self, *input, **kwargs)
1049 if not (self._backward_hooks or self._forward_hooks or self._forward_pre_hooks or _global_backward_hooks
1050 or _global_forward_hooks or _global_forward_pre_hooks):
-> 1051 return forward_call(*input, **kwargs)
1052 # Do not call functions when jit is used
1053 full_backward_hooks, non_full_backward_hooks = [], []
~\AppData\Roaming\Python\Python37\site-packages\transformers\models\gpt_neo\modeling_gpt_neo.py in forward(self, hidden_states, layer_past, attention_mask, head_mask, use_cache, output_attentions)
559 head_mask=head_mask,
560 use_cache=use_cache,
--> 561 output_attentions=output_attentions,
562 )
563 attn_output = attn_outputs[0] # output_attn: a, present, (attentions)
~\AppData\Roaming\Python\Python37\site-packages\torch\nn\modules\module.py in _call_impl(self, *input, **kwargs)
1049 if not (self._backward_hooks or self._forward_hooks or self._forward_pre_hooks or _global_backward_hooks
1050 or _global_forward_hooks or _global_forward_pre_hooks):
-> 1051 return forward_call(*input, **kwargs)
1052 # Do not call functions when jit is used
1053 full_backward_hooks, non_full_backward_hooks = [], []
~\AppData\Roaming\Python\Python37\site-packages\transformers\models\gpt_neo\modeling_gpt_neo.py in forward(self, hidden_states, layer_past, attention_mask, head_mask, use_cache, output_attentions)
501 head_mask=head_mask,
502 use_cache=use_cache,
--> 503 output_attentions=output_attentions,
504 )
505
~\AppData\Roaming\Python\Python37\site-packages\torch\nn\modules\module.py in _call_impl(self, *input, **kwargs)
1049 if not (self._backward_hooks or self._forward_hooks or self._forward_pre_hooks or _global_backward_hooks
1050 or _global_forward_hooks or _global_forward_pre_hooks):
-> 1051 return forward_call(*input, **kwargs)
1052 # Do not call functions when jit is used
1053 full_backward_hooks, non_full_backward_hooks = [], []
~\AppData\Roaming\Python\Python37\site-packages\transformers\models\gpt_neo\modeling_gpt_neo.py in forward(self, hidden_states, attention_mask, layer_past, head_mask, use_cache, output_attentions)
453 masked_bias=self.masked_bias,
454 attn_dropout=self.attn_dropout,
--> 455 head_mask=head_mask,
456 )
457
~\AppData\Roaming\Python\Python37\site-packages\transformers\models\gpt_neo\modeling_gpt_neo.py in _attn(self, query, key, value, causal_mask, masked_bias, attn_dropout, attention_mask, head_mask)
276
277 attn_weights = torch.matmul(query, key.transpose(-1, -2))
--> 278 attn_weights = torch.where(causal_mask, attn_weights, masked_bias.to(attn_weights.dtype))
279
280 if attention_mask is not None:
RuntimeError: where expected condition to be a boolean tensor, but got a tensor with dtype Float
The text was updated successfully, but these errors were encountered:
I was successful in getting your code to work on my 2060 laptop after a few tweeks. I just got a tesla M40 card in and am looking at running GPT-J-6 on it using this method. To start though, I thought I'd use the same code with the GPT-NEO-2.7B model to verify that it's working OK. I got the error in the title though when I tried to run it.
Any ideas as to what's going on?
Full error log:
The text was updated successfully, but these errors were encountered: