Skip to content

Why are you using relu on the last layer? #1

@qbx2

Description

@qbx2
input_layer = Input(shape=(input_dim, ))

encoder = Dense(encoding_dim, activation="tanh", 
                activity_regularizer=regularizers.l1(10e-5))(input_layer)
encoder = Dense(int(encoding_dim / 2), activation="relu")(encoder)

decoder = Dense(int(encoding_dim / 2), activation='tanh')(encoder)
decoder = Dense(input_dim, activation='relu')(decoder)

autoencoder = Model(inputs=input_layer, outputs=decoder)

From the fraud_detection.ipynb, there's model using relu as last layer. However, the csv file contains negative values which relu cannot represent. I think the last layer of decoder should represent the input value. Wouldn't it be an issue?

Thanks.

Metadata

Metadata

Assignees

No one assigned

    Labels

    No labels
    No labels

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions