@@ -218,11 +218,7 @@ def test_whitening():
218
218
219
219
220
220
def assert_fit_results_almost_equal (
221
- pca_baseline ,
222
- pca ,
223
- ev_decimal = 1 ,
224
- evr_decimal = 3 ,
225
- nv_decimal = 3 ,
221
+ pca_baseline , pca , ev_decimal = 1 , evr_decimal = 3 , nv_decimal = 3 ,
226
222
):
227
223
assert_array_almost_equal (
228
224
pca_baseline .explained_variance_ , pca .explained_variance_ , decimal = ev_decimal
@@ -252,9 +248,7 @@ def assert_explained_and_empirical_var_almost_eq(X, dX_mean_0, apca, rpca):
252
248
253
249
X_rpca = rpca .transform (dX_mean_0 )
254
250
assert_array_almost_equal (
255
- rpca .explained_variance_ ,
256
- np .var (X_rpca , ddof = 1 , axis = 0 ),
257
- decimal = 1 ,
251
+ rpca .explained_variance_ , np .var (X_rpca , ddof = 1 , axis = 0 ), decimal = 1 ,
258
252
)
259
253
assert_array_almost_equal (rpca .explained_variance_ , empirical_variances , decimal = 1 )
260
254
@@ -272,21 +266,15 @@ def test_no_centering():
272
266
273
267
# Correlated data.
274
268
X_corr = datasets .make_classification (
275
- n_samples ,
276
- n_features ,
277
- n_informative = n_features - 2 ,
278
- random_state = rng ,
269
+ n_samples , n_features , n_informative = n_features - 2 , random_state = rng ,
279
270
)[0 ]
280
271
dX_corr = da .from_array (X_corr , chunks = (50 , n_features ))
281
272
dX_corr_mean_0 = dX_corr - dX_corr .mean (axis = 0 )
282
273
283
274
# Test fitting pseudo-random data.
284
275
pca = sd .PCA (n_components = n_components , svd_solver = "full" , random_state = 0 ).fit (X )
285
276
apca = dd .PCA (
286
- n_components = n_components ,
287
- svd_solver = "full" ,
288
- random_state = 0 ,
289
- center = False ,
277
+ n_components = n_components , svd_solver = "full" , random_state = 0 , center = False ,
290
278
).fit (dX_mean_0 )
291
279
292
280
assert_fit_results_almost_equal (pca , apca )
@@ -306,10 +294,7 @@ def test_no_centering():
306
294
X_corr
307
295
)
308
296
apca_corr = dd .PCA (
309
- n_components = n_components ,
310
- svd_solver = "full" ,
311
- random_state = 0 ,
312
- center = False ,
297
+ n_components = n_components , svd_solver = "full" , random_state = 0 , center = False ,
313
298
).fit (dX_corr_mean_0 )
314
299
315
300
assert_fit_results_almost_equal (pca_corr , apca_corr )
@@ -342,12 +327,9 @@ def test_inverse_transform_no_centering():
342
327
dX = da .from_array (X , chunks = (n // 2 , p ))
343
328
dX_mean_0 = dX - dX .mean (axis = 0 )
344
329
345
- pca = dd .PCA (
346
- n_components = 2 ,
347
- svd_solver = "full" ,
348
- random_state = 0 ,
349
- center = False ,
350
- ).fit (dX_mean_0 )
330
+ pca = dd .PCA (n_components = 2 , svd_solver = "full" , random_state = 0 , center = False ,).fit (
331
+ dX_mean_0
332
+ )
351
333
352
334
# Test inverse transformation of artificial data, with strongly expressed mean.
353
335
Y = pca .transform (dX_mean_0 )
@@ -356,11 +338,7 @@ def test_inverse_transform_no_centering():
356
338
357
339
# As above, but with whitening.
358
340
pca = dd .PCA (
359
- n_components = 2 ,
360
- svd_solver = "full" ,
361
- random_state = 0 ,
362
- whiten = True ,
363
- center = False ,
341
+ n_components = 2 , svd_solver = "full" , random_state = 0 , whiten = True , center = False ,
364
342
).fit (dX_mean_0 )
365
343
366
344
Y = pca .transform (dX_mean_0 )
@@ -374,26 +352,17 @@ def test_sample_scoring_no_centering():
374
352
n_features = 80
375
353
376
354
X = datasets .make_classification (
377
- n_samples ,
378
- n_features ,
379
- n_informative = n_features - 2 ,
380
- random_state = rng ,
355
+ n_samples , n_features , n_informative = n_features - 2 , random_state = rng ,
381
356
)[0 ]
382
357
dX = da .from_array (X , chunks = (50 , n_features ))
383
358
dX_mean_0 = dX - dX .mean (axis = 0 )
384
359
385
- pca = dd .PCA (
386
- n_components = 2 ,
387
- svd_solver = "full" ,
388
- random_state = 0 ,
389
- center = True ,
390
- ).fit (dX )
360
+ pca = dd .PCA (n_components = 2 , svd_solver = "full" , random_state = 0 , center = True ,).fit (
361
+ dX
362
+ )
391
363
392
364
pca_mean_0 = dd .PCA (
393
- n_components = 2 ,
394
- svd_solver = "full" ,
395
- random_state = 0 ,
396
- center = False ,
365
+ n_components = 2 , svd_solver = "full" , random_state = 0 , center = False ,
397
366
).fit (dX_mean_0 )
398
367
399
368
assert_almost_equal (pca .score (dX ), pca_mean_0 .score (dX_mean_0 ), decimal = 6 )
0 commit comments