Skip to content

Commit a394afc

Browse files
committed
Reformat test_pca.py with black==19.10b0
1 parent 01dd9d4 commit a394afc

File tree

1 file changed

+14
-45
lines changed

1 file changed

+14
-45
lines changed

tests/test_pca.py

Lines changed: 14 additions & 45 deletions
Original file line numberDiff line numberDiff line change
@@ -218,11 +218,7 @@ def test_whitening():
218218

219219

220220
def assert_fit_results_almost_equal(
221-
pca_baseline,
222-
pca,
223-
ev_decimal=1,
224-
evr_decimal=3,
225-
nv_decimal=3,
221+
pca_baseline, pca, ev_decimal=1, evr_decimal=3, nv_decimal=3,
226222
):
227223
assert_array_almost_equal(
228224
pca_baseline.explained_variance_, pca.explained_variance_, decimal=ev_decimal
@@ -252,9 +248,7 @@ def assert_explained_and_empirical_var_almost_eq(X, dX_mean_0, apca, rpca):
252248

253249
X_rpca = rpca.transform(dX_mean_0)
254250
assert_array_almost_equal(
255-
rpca.explained_variance_,
256-
np.var(X_rpca, ddof=1, axis=0),
257-
decimal=1,
251+
rpca.explained_variance_, np.var(X_rpca, ddof=1, axis=0), decimal=1,
258252
)
259253
assert_array_almost_equal(rpca.explained_variance_, empirical_variances, decimal=1)
260254

@@ -272,21 +266,15 @@ def test_no_centering():
272266

273267
# Correlated data.
274268
X_corr = datasets.make_classification(
275-
n_samples,
276-
n_features,
277-
n_informative=n_features - 2,
278-
random_state=rng,
269+
n_samples, n_features, n_informative=n_features - 2, random_state=rng,
279270
)[0]
280271
dX_corr = da.from_array(X_corr, chunks=(50, n_features))
281272
dX_corr_mean_0 = dX_corr - dX_corr.mean(axis=0)
282273

283274
# Test fitting pseudo-random data.
284275
pca = sd.PCA(n_components=n_components, svd_solver="full", random_state=0).fit(X)
285276
apca = dd.PCA(
286-
n_components=n_components,
287-
svd_solver="full",
288-
random_state=0,
289-
center=False,
277+
n_components=n_components, svd_solver="full", random_state=0, center=False,
290278
).fit(dX_mean_0)
291279

292280
assert_fit_results_almost_equal(pca, apca)
@@ -306,10 +294,7 @@ def test_no_centering():
306294
X_corr
307295
)
308296
apca_corr = dd.PCA(
309-
n_components=n_components,
310-
svd_solver="full",
311-
random_state=0,
312-
center=False,
297+
n_components=n_components, svd_solver="full", random_state=0, center=False,
313298
).fit(dX_corr_mean_0)
314299

315300
assert_fit_results_almost_equal(pca_corr, apca_corr)
@@ -342,12 +327,9 @@ def test_inverse_transform_no_centering():
342327
dX = da.from_array(X, chunks=(n // 2, p))
343328
dX_mean_0 = dX - dX.mean(axis=0)
344329

345-
pca = dd.PCA(
346-
n_components=2,
347-
svd_solver="full",
348-
random_state=0,
349-
center=False,
350-
).fit(dX_mean_0)
330+
pca = dd.PCA(n_components=2, svd_solver="full", random_state=0, center=False,).fit(
331+
dX_mean_0
332+
)
351333

352334
# Test inverse transformation of artificial data, with strongly expressed mean.
353335
Y = pca.transform(dX_mean_0)
@@ -356,11 +338,7 @@ def test_inverse_transform_no_centering():
356338

357339
# As above, but with whitening.
358340
pca = dd.PCA(
359-
n_components=2,
360-
svd_solver="full",
361-
random_state=0,
362-
whiten=True,
363-
center=False,
341+
n_components=2, svd_solver="full", random_state=0, whiten=True, center=False,
364342
).fit(dX_mean_0)
365343

366344
Y = pca.transform(dX_mean_0)
@@ -374,26 +352,17 @@ def test_sample_scoring_no_centering():
374352
n_features = 80
375353

376354
X = datasets.make_classification(
377-
n_samples,
378-
n_features,
379-
n_informative=n_features - 2,
380-
random_state=rng,
355+
n_samples, n_features, n_informative=n_features - 2, random_state=rng,
381356
)[0]
382357
dX = da.from_array(X, chunks=(50, n_features))
383358
dX_mean_0 = dX - dX.mean(axis=0)
384359

385-
pca = dd.PCA(
386-
n_components=2,
387-
svd_solver="full",
388-
random_state=0,
389-
center=True,
390-
).fit(dX)
360+
pca = dd.PCA(n_components=2, svd_solver="full", random_state=0, center=True,).fit(
361+
dX
362+
)
391363

392364
pca_mean_0 = dd.PCA(
393-
n_components=2,
394-
svd_solver="full",
395-
random_state=0,
396-
center=False,
365+
n_components=2, svd_solver="full", random_state=0, center=False,
397366
).fit(dX_mean_0)
398367

399368
assert_almost_equal(pca.score(dX), pca_mean_0.score(dX_mean_0), decimal=6)

0 commit comments

Comments
 (0)