-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathModels.R
549 lines (418 loc) · 21.5 KB
/
Models.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
#KAGGLE MODEL BUILDING SCRIPT
#Load Data and Packages
library(ROCR)
library(plyr) #use mapvalues function
library(tm)
NewsTrain = read.csv("NYTimesBlogTrain.csv", stringsAsFactors=FALSE)
NewsTest = read.csv("NYTimesBlogTest.csv", stringsAsFactors=FALSE)
#PROCESS DATA (after data exploration):
# Convert date/time to a format R will understand:
NewsTrain$PubDate = strptime(NewsTrain$PubDate, "%Y-%m-%d %H:%M:%S")
NewsTest$PubDate = strptime(NewsTest$PubDate, "%Y-%m-%d %H:%M:%S")
range(NewsTrain$PubDate) # SEP to NOV
range(NewsTest$PubDate) #DEC
#Create Weekday variable: weekend is ~ twice more popular than weekdays
NewsTrain$Weekday = NewsTrain$PubDate$wday #extract weekdays (0 to 6)
NewsTest$Weekday = NewsTest$PubDate$wday
#Convert 0 - 6 into actual weekday names:
wd = c("Sunday", "Monday", "Tuesday", "Wednesday", "Thursday", "Friday", "Saturday")
NewsTrain$Weekday = as.factor(mapvalues(NewsTrain$Weekday, from = 0:6, to = wd))
NewsTest$Weekday = as.factor(mapvalues(NewsTest$Weekday, from = 0:6, to = wd))
#blogTrain$Weekend[blogTrain$Weekday == "Saturday" | blogTrain$Weekday == "Sunday"] = 1
#blogTrain$Weekend[!(blogTrain$Weekday == "Saturday" | blogTrain$Weekday == "Sunday")] = 0
#Create Hour variable: pub hours with popularity above 18% mean are 18-23(33%), 15(21%), 10-12(18%)
NewsTrain$Hour = NewsTrain$PubDate$hour #extract publishing hour
NewsTest$Hour = NewsTest$PubDate$hour
#blogTrain$PopHour[blogTrain$Hour >= 18] = 1
#blogTrain$PopHour[blogTrain$Hour < 18] = 0
#FIRST MODEL: logistic regression
mod1 = glm(Popular ~ WordCount + Hour + SectionName + Weekday, data = NewsTrain, family = binomial)
summary(mod1) #AIC = 3887
pred.train1 = predict(mod1, type="response") #predictions on training set
summary(pred.train1)
table(NewsTrain$Popular, pred.train1 > 0.5) #(5158+640)/6532 0.8876301
ROC.mod1 = prediction(pred.train1, NewsTrain$Popular)
auc = as.numeric(performance(ROC.mod1, "auc")@y.values) #0.8939753
pred.mod1 = predict(mod1, newdata = NewsTest, type="response") #prediction on test set
summary(pred.mod1)
tapply(pred.mod1, NewsTest$SectionName, mean)
tapply(pred.train1, NewsTrain$SectionName, mean)
#Make submission file for Kaggle:
Submission1 = data.frame(UniqueID = NewsTest$UniqueID, Probability1 = pred.mod1)
write.csv(Submission1, "Submission_mod1.csv", row.names=FALSE) #AUC 0.86780
#Model 1 using log of WordCount to make it more linear:
NewsTrain$LogWordCount = log(NewsTrain$WordCount + 1) #+1 is added to avoid Inf values
NewsTest$LogWordCount = log(NewsTest$WordCount + 1)
mod1log = glm(Popular ~ LogWordCount + Hour + SectionName + Weekday, data = NewsTrain,
family = binomial)
summary(mod1log) #AIC = 3728
pred.train1log = predict(mod1log, type="response") #predictions on training set
summary(pred.train1log)
table(NewsTrain$Popular, pred.train1log > 0.5) #(5204+594)/6532 0.8876301
ROC.mod1log = prediction(pred.train1log, NewsTrain$Popular)
auc = as.numeric(performance(ROC.mod1log, "auc")@y.values) #0.9075345 better!
pred.mod1log = predict(mod1log, newdata = NewsTest, type="response") #prediction on test set
summary(pred.mod1log)
#Make submission file for Kaggle:
Submission1log = data.frame(UniqueID = NewsTest$UniqueID, Probability1 = pred.mod1log)
write.csv(Submission1log, "Submission_mod1log.csv", row.names=FALSE) #AUC 0.87985 better than mod1
#Model 2: same as mod1, but include NewsDesk
mod2 = glm(Popular ~ WordCount + Hour + SectionName + Weekday + NewsDesk, data = NewsTrain,
family = binomial)
summary(mod2) #AIC = 3498
pred.train2 = predict(mod2, type="response") #predictions on training set
summary(pred.train2)
table(NewsTrain$Popular, pred.train2 > 0.5) #(5205+655)/6532 0.8971219
ROC.mod2 = prediction(pred.train2, NewsTrain$Popular)
auc = as.numeric(performance(ROC.mod2, "auc")@y.values) #0.9116301 overfitting?
pred.mod2 = predict(mod2, newdata = NewsTest, type="response") #prediction on test set
summary(pred.mod2)
#Make submission file for Kaggle:
Submission2 = data.frame(UniqueID = NewsTest$UniqueID, Probability1 = pred.mod2)
write.csv(Submission2, "Submission_mod2.csv", row.names=FALSE) #AUC 0.88735
#PROCESS TEXT VARIABLES: Headline and Abstract
#Headline
CorpusHeadline = Corpus(VectorSource(c(NewsTrain$Headline, NewsTest$Headline)))
CorpusHeadline = tm_map(CorpusHeadline, tolower)
CorpusHeadline = tm_map(CorpusHeadline, PlainTextDocument)
CorpusHeadline = tm_map(CorpusHeadline, removePunctuation)
CorpusHeadline = tm_map(CorpusHeadline, removeWords, stopwords("english"))
CorpusHeadline = tm_map(CorpusHeadline, stemDocument)
dtm.hl = DocumentTermMatrix(CorpusHeadline)
findFreqTerms(dtm.hl, lowfreq = 50)
sparse.hl = removeSparseTerms(dtm.hl, 0.985) #42 terms at 99%, 16 terms at 98.5%
HeadlineWords = as.data.frame(as.matrix(sparse.hl))
colnames(HeadlineWords) = make.names(colnames(HeadlineWords))
HlTrainSet = head(HeadlineWords, nrow(NewsTrain))
HlTestSet = tail(HeadlineWords, nrow(NewsTest))
#Abstract
CorpusAbstract = Corpus(VectorSource(c(NewsTrain$Abstract, NewsTest$Abstract)))
CorpusAbstract = tm_map(CorpusAbstract, tolower)
CorpusAbstract = tm_map(CorpusAbstract, PlainTextDocument)
CorpusAbstract = tm_map(CorpusAbstract, removePunctuation)
CorpusAbstract = tm_map(CorpusAbstract, removeWords, stopwords("english"))
CorpusAbstract = tm_map(CorpusAbstract, stemDocument)
dtm.abs = DocumentTermMatrix(CorpusAbstract)
findFreqTerms(dtm.abs, lowfreq = 50)
sparse.abs = removeSparseTerms(dtm.abs, 0.985) #101 terms
AbstractWords = as.data.frame(as.matrix(sparse.abs))
colnames(AbstractWords) = make.names(colnames(AbstractWords))
AbsTrainSet = head(AbstractWords, nrow(NewsTrain))
AbsTestSet = tail(AbstractWords, nrow(NewsTest))
#Analyze text processing results
abs = findFreqTerms(dtm.abs, lowfreq = 130) #101 terms
hl = findFreqTerms(dtm.hl, lowfreq = 85) #42 terms (used 85 to approximate to 99% sparsity)
diff = hl[!hl %in% abs] #only 14 words in headlines are not in abstract (don't seem relevant)
diff = abs[!abs %in% hl] #73 words in abstract are not in headlines (230-193)
#Conclusion: work with headlines, switch to abstract if model results do not seem satisfcatory.
#Create datasets with either headline or abstract text to be used in modeling:
#Headline:
HlTrainSet$Popular = NewsTrain$Popular
#HlTrainSet$WordCount = log(NewsTrain$WordCount + 1)
HlTrainSet$WordCount = NewsTrain$WordCount
HlTrainSet$Weekday = NewsTrain$Weekday
HlTrainSet$Hour = NewsTrain$Hour
HlTrainSet$SectionName = NewsTrain$SectionName
HlTrainSet$NewsDesk = NewsTrain$NewsDesk
HlTrainSet$UniqueID = NewsTrain$UniqueID
dim(HlTrainSet) #6532 x 49 (23)
#names(HlTrainSet)[42:49]
names(HlTrainSet)[16:23]
#HlTestSet$WordCount = log(NewsTest$WordCount + 1)
HlTestSet$WordCount = NewsTest$WordCount
HlTestSet$Weekday = NewsTest$Weekday
HlTestSet$Hour = NewsTest$Hour
HlTestSet$SectionName = NewsTest$SectionName
HlTestSet$NewsDesk = NewsTest$NewsDesk
HlTestSet$UniqueID = NewsTest$UniqueID
#names(HlTestSet)[42:48]
names(HlTestSet)[16:22]
#Abstract:
AbsTrainSet$Popular = NewsTrain$Popular
#AbsTrainSet$WordCount = log(NewsTrain$WordCount + 1)
AbsTrainSet$WordCount = NewsTrain$WordCount
AbsTrainSet$Weekday = NewsTrain$Weekday
AbsTrainSet$Hour = NewsTrain$Hour
AbsTrainSet$SectionName = NewsTrain$SectionName
AbsTrainSet$NewsDesk = NewsTrain$NewsDesk
AbsTrainSet$UniqueID = NewsTrain$UniqueID
dim(AbsTrainSet) #6532 x 108
#AbsTestSet$WordCount = log(NewsTest$WordCount + 1)
AbsTestSet$WordCount = NewsTest$WordCount
AbsTestSet$Weekday = NewsTest$Weekday
AbsTestSet$Hour = NewsTest$Hour
AbsTestSet$SectionName = NewsTest$SectionName
AbsTestSet$NewsDesk = NewsTest$NewsDesk
AbsTestSet$UniqueID = NewsTest$UniqueID
dim(AbsTestSet) #1870 x 107
# dtmTitle = as.data.frame(as.matrix(dtmTitle))
# dtmAbstract = as.data.frame(as.matrix(dtmAbstract))
# colnames(dtmTitle) = paste0("T", colnames(dtmTitle))
# colnames(dtmAbstract) = paste0("A", colnames(dtmAbstract))
# dtm = cbind(dtmTitle, dtmAbstract)
#MODELING WITH TEXT DATA: logistic regression
#Model 3: using processed Headline and removing NewsDesk
mod3 = glm(Popular ~. -NewsDesk, data = HlTrainSet, family = binomial)
summary(mod3) #AIC = 3657 overfit and worse than mod2
pred.train3 = predict(mod3, type="response") #predictions on training set
summary(pred.train3)
table(NewsTrain$Popular, pred.train3 > 0.5) #(5215+603)/6532 0.890692
ROC.mod3 = prediction(pred.train3, NewsTrain$Popular)
auc = as.numeric(performance(ROC.mod3, "auc")@y.values) #0.9171627 better than mod2
#Model 4: using processed Headline and keeping NewsDesk
mod4 = glm(Popular ~. , data = HlTrainSet, family = binomial)
summary(mod4) #AIC = 3283, the best so far but overfit
pred.train4 = predict(mod4, type="response") #predictions on training set
summary(pred.train4)
table(NewsTrain$Popular, pred.train4 > 0.5) #(5238+658)/6532 0.9026332
ROC.mod4 = prediction(pred.train4, NewsTrain$Popular)
auc = as.numeric(performance(ROC.mod4, "auc")@y.values) #0.9320218 the best so far, overfit
#Model 5: using processed Abstract and removing NewsDesk
mod5 = glm(Popular ~. -NewsDesk, data = AbsTrainSet, family = binomial)
summary(mod5) #AIC = 3734 (3409 with NewsDesk), overfit
pred.train5 = predict(mod5, type="response") #predictions on training set
summary(pred.train5)
table(NewsTrain$Popular, pred.train5 > 0.5) #(5220+654)/6532 0.899265 small increase over headline
ROC.mod5 = prediction(pred.train5, NewsTrain$Popular)
auc = as.numeric(performance(ROC.mod5, "auc")@y.values) #0.9276059
#auc 0.9393006 with NewsDesk: higher... but is less more?
#CART MODELING
library(rpart)
library(rpart.plot)
#remove log terms for WordCount:
HlTrainSet$WordCount = NewsTrain$WordCount
HlTestSet$WordCount = NewsTest$WordCount
#Model 6: CART with default minbucket and cp, Headline text including NewsDesk
# HlTrainSet$NewsDesk = NewsTrain$NewsDesk
# HlTestSet$NewsDesk = NewsTest$NewsDesk
mod6 = rpart(Popular ~., data = HlTrainSet, method = "class") #default minbucket and cp
prp(mod6)
pred.train6 = predict(mod6) #predictions on training set
prob.train6 = pred.train6[,2]
table(HlTrainSet$Popular, prob.train6 >= 0.5) #actual vs predicted
(5291 + 608)/nrow(HlTrainSet) #accuracy: 0.9030925
ROC.mod6 = prediction(prob.train6, HlTrainSet$Popular)
auc = as.numeric(performance(ROC.mod6, "auc")@y.values) #0.7781507
#Model 7: same as model 6, without NewsDesk
HlTrainSet$NewsDesk = NULL
HlTestSet$NewsDesk = NULL
mod7 = rpart(Popular ~., data = HlTrainSet, method = "class") #default minbucket and cp
prp(mod7)
pred.train7 = predict(mod7)
prob.train7 = pred.train7[,2]
table(HlTrainSet$Popular, prob.train7 >= 0.5)
(5267 + 604)/nrow(HlTrainSet) #accuracy: 0.8988059 lower than mod6 but more sensible?
ROC.mod7 = prediction(prob.train7, HlTrainSet$Popular)
auc = as.numeric(performance(ROC.mod7, "auc")@y.values) #0.7765372 lowest so far
pred.mod7 = predict(mod7, newdata = HlTestSet, type = "class") #prediction on test set
summary(pred.mod7) #176/nrow(HlTestSet) 9.4% Popular items
#Model 8: simple CART, without text data
mod8 = rpart(Popular ~ WordCount + Hour + SectionName + Weekday, data = NewsTrain,
method = "class")
prp(mod8) #in conclusion, adding text data didn't seem to be relevant to CART with std params.
#MODELING WITH RANDOM FORESTS
library(randomForest)
set.seed(1010)
#Data Pre-processing
NewsPop = rbind(NewsTrain[, c(1:8, 10:12)], NewsTest) #this needs to be done due to bug in pred RF
y.train = as.factor(NewsTrain$Popular)
x.train = head(NewsPop, nrow(NewsTrain))
x.test = tail(NewsPop, nrow(NewsTest))
#Model 9: RF without text data, including NewsDesk
mod9 = randomForest(y.train ~ WordCount + Hour + SectionName + Weekday + NewsDesk,
data = x.train, importance = T)
varImpPlot(mod9)
pred.train9 = predict(mod9, type = "prob")[,2]
summary(pred.train9)
table(NewsTrain$Popular, pred.train9 >= 0.5)
(5230+762)/nrow(NewsTrain) #accuracy: 0.9173301
ROC.mod9 = prediction(pred.train9, y.train)
auc = as.numeric(performance(ROC.mod9, "auc")@y.values) #0.9352087
pred.mod9 = predict(mod9, newdata = x.test, type = "prob")[,2]
summary(pred.mod9)
#Make submission file for Kaggle:
Submission9 = data.frame(UniqueID = x.test$UniqueID, Probability1 = pred.mod9)
write.csv(Submission9, "Submission_mod9.csv", row.names=FALSE) #AUC 0.92024
#Model 10: RF without text data, excluding NewsDesk
set.seed(1010)
mod10 = randomForest(y.train ~ WordCount + Hour + SectionName + Weekday, data = x.train,
importance = T)
varImpPlot(mod10)
pred.train10 = predict(mod10, type = "prob")[,2]
summary(pred.train10)
table(y.train, pred.train10 >= 0.5)
(5205+724)/nrow(NewsTrain) #accuracy: 0.9076852 slightly lower without NewsDesk
ROC.mod10 = prediction(pred.train10, y.train)
auc = as.numeric(performance(ROC.mod10, "auc")@y.values) #0.923021
#RANDOM FOREST INCLUDING TEXT DATA
#standard parameters (classification): mtry (sqrt(p)), nodesize = 1, ntree = 500
# Data Pre-processing
#HlPop = rbind(HlTrainSet[, c(1:42, 44:49)], HlTestSet) #this needs to be done due to bug in pred RF
HlPop = rbind(HlTrainSet[, c(1:16, 18:23)], HlTestSet)
y.hltrain = as.factor(HlTrainSet$Popular)
x.hltrain = head(HlPop, nrow(HlTrainSet))
x.hltest = tail(HlPop, nrow(HlTestSet))
AbsPop = rbind(AbsTrainSet[, c(1:101, 103:108)], AbsTestSet) #this needs to be done due to bug in pred RF
y.abstrain = as.factor(AbsTrainSet$Popular)
x.abstrain = head(AbsPop, nrow(AbsTrainSet))
x.abstest = tail(AbsPop, nrow(AbsTestSet))
#Model 11: RF with headline text at 99% sparsity, including NewsDesk
set.seed(1010)
mod11 = randomForest(y.hltrain ~. -UniqueID, data = x.hltrain, importance = T)
varImpPlot(mod11)
pred.train11 = predict(mod11, type = "prob")[,2]
summary(pred.train11)
table(y.hltrain, pred.train11 >= 0.5)
(5243+728)/nrow(HlTrainSet) #accuracy: 0.9141151
ROC.mod11 = prediction(pred.train11, y.hltrain)
auc = as.numeric(performance(ROC.mod11, "auc")@y.values) #0.9333806
pred.mod11 = predict(mod11, newdata = x.hltest, type = "prob")[,2]
summary(pred.mod11)
#Make submission file for Kaggle:
Submission11 = data.frame(UniqueID = x.hltest$UniqueID, Probability1 = pred.mod11)
write.csv(Submission11, "Submission_mod11.csv", row.names=FALSE) #AUC 0.92126 best so far!
#Model 12: RF with abstract text at 98.5% sparsity, including NewsData
set.seed(1010)
mod12 = randomForest(y.abstrain ~. -UniqueID, data = x.abstrain, importance = T)
varImpPlot(mod12)
pred.train12 = predict(mod12, type = "prob")[,2]
summary(pred.train12)
table(y.abstrain, pred.train12 >= 0.5)
(5262+711)/nrow(AbsTrainSet) #accuracy: 0.9144213
ROC.mod12 = prediction(pred.train12, y.abstrain)
auc = as.numeric(performance(ROC.mod12, "auc")@y.values) #0.9323759
pred.mod12 = predict(mod12, newdata = x.abstest, type = "prob")[,2]
summary(pred.mod12)
#Make submission file for Kaggle:
Submission12 = data.frame(UniqueID = x.abstest$UniqueID, Probability1 = pred.mod12)
write.csv(Submission12, "Submission_mod12.csv", row.names=FALSE) #AUC 0.92023 slightly worse!
#Model 13: same as model 12, but ntree = 701
set.seed(1010)
mod13 = randomForest(y.abstrain ~. -UniqueID, data = x.abstrain, importance = T, ntree = 701)
varImpPlot(mod13)
pred.train13 = predict(mod13, type = "prob")[,2]
summary(pred.train13)
table(y.abstrain, pred.train13 >= 0.5)
(5267+714)/nrow(AbsTrainSet) #accuracy: 0.9156461
ROC.mod13 = prediction(pred.train13, y.abstrain)
auc = as.numeric(performance(ROC.mod13, "auc")@y.values) #0.9324862
pred.mod13 = predict(mod13, newdata = x.abstest, type = "prob")[,2]
summary(pred.mod13) #lowest OOB error
#Make submission file for Kaggle:
Submission13 = data.frame(UniqueID = x.abstest$UniqueID, Probability1 = pred.mod13)
write.csv(Submission13, "Submission_mod13.csv", row.names=FALSE) #AUC 0.91961
#Model 14: RF with headline text at 98.5% sparsity, including NewsData, ntree = 701
set.seed(1010)
mod14 = randomForest(y.hltrain ~. -UniqueID, data = x.hltrain, importance = T, ntree = 701)
varImpPlot(mod14)
pred.train14 = predict(mod14, type = "prob")[,2]
summary(pred.train14)
table(y.hltrain, pred.train14 >= 0.5)
(5241+731)/nrow(HlTrainSet) #accuracy: 0.9142682
ROC.mod14 = prediction(pred.train14, y.hltrain)
auc = as.numeric(performance(ROC.mod14, "auc")@y.values) #0.9339284
pred.mod14 = predict(mod14, newdata = x.hltest, type = "prob")[,2]
summary(pred.mod14)
#Make submission file for Kaggle:
Submission14 = data.frame(UniqueID = x.hltest$UniqueID, Probability1 = pred.mod14)
write.csv(Submission14, "Submission_mod14.csv", row.names=FALSE) #AUC ?
#BOOSTING
library(gbm)
#parameters: d (depth) 1, 2, 4; lambda (shrinkage) 0.001 (default), 0.01, 0.1;
#n.trees - requires cross-validation to optimize (start with 10000), it can overfit
#Model 15 - using Headline text at 98.5% sparsity
#Boosting with d = 1, lambda = 0.001, n.tree = 10000, bernoulli distrib for classification
mod15 = gbm(Popular ~. -UniqueID, data = HlTrainSet, distribution = "bernoulli",
n.trees = 10000, interaction.depth = 1)
summary(mod15)
pred.train15 = predict(mod15, n.trees = 10000, type = "response")
summary(pred.train15)
table(HlTrainSet$Popular, pred.train15 >= 0.5)
(5246+665)/nrow(HlTrainSet) #accuracy: 0.9049296
ROC.mod15 = prediction(pred.train15, HlTrainSet$Popular)
auc = as.numeric(performance(ROC.mod15, "auc")@y.values) #0.9221406
#Model 16 - same as 15 but changed d = 4 and ntree = 5000
mod16 = gbm(Popular ~. -UniqueID, data = HlTrainSet, distribution = "bernoulli",
n.trees = 5000, interaction.depth = 4)
summary(mod16)
pred.train16 = predict(mod16, n.trees = 5000, type = "response")
summary(pred.train16)
table(HlTrainSet$Popular, pred.train16 >= 0.5)
(5249+696)/nrow(HlTrainSet) #accuracy: 0.9101347
ROC.mod16 = prediction(pred.train16, HlTrainSet$Popular)
auc = as.numeric(performance(ROC.mod16, "auc")@y.values) #0.9424268
pred.mod16 = predict(mod16, newdata = HlTestSet, n.trees = 5000, type = "response")
summary(pred.mod16)
#Make submission file for Kaggle:
Submission16 = data.frame(UniqueID = HlTestSet$UniqueID, Probability1 = pred.mod16)
write.csv(Submission16, "Submission_mod16.csv", row.names=FALSE) #AUC
#Model 17 - same as 16 but changed shrinkage to 0.01 from 0.001
mod17 = gbm(Popular ~. -UniqueID, data = HlTrainSet, distribution = "bernoulli",
n.trees = 5000, interaction.depth = 4, shrinkage = 0.01)
summary(mod17)
pred.train17 = predict(mod17, n.trees = 5000, type = "response")
summary(pred.train17)
table(HlTrainSet$Popular, pred.train17 >= 0.5)
(5305+835)/nrow(HlTrainSet) #accuracy: 0.9399878
ROC.mod17 = prediction(pred.train17, HlTrainSet$Popular)
auc = as.numeric(performance(ROC.mod17, "auc")@y.values) #0.9709868
pred.mod17 = predict(mod17, newdata = HlTestSet, n.trees = 5000, type = "response")
summary(pred.mod17)
#Make submission file for Kaggle:
Submission17 = data.frame(UniqueID = HlTestSet$UniqueID, Probability1 = pred.mod17)
write.csv(Submission17, "Submission_mod17.csv", row.names=FALSE) #AUC 0.92034
#Model 18 - same as 17, but shrinkage now is 0.1
mod18 = gbm(Popular ~. -UniqueID, data = HlTrainSet, distribution = "bernoulli",
n.trees = 5000, interaction.depth = 4, shrinkage = 0.1)
summary(mod18)
pred.train18 = predict(mod18, n.trees = 5000, type = "response")
summary(pred.train18)
table(HlTrainSet$Popular, pred.train18 >= 0.5)
(5432+1048)/nrow(HlTrainSet) #accuracy: 0.9920392 overfit?
ROC.mod18 = prediction(pred.train18, HlTrainSet$Popular)
auc = as.numeric(performance(ROC.mod18, "auc")@y.values) #0.9989951
pred.mod18 = predict(mod18, newdata = HlTestSet, n.trees = 5000, type = "response")
summary(pred.mod18)
#Make submission file for Kaggle:
Submission18 = data.frame(UniqueID = HlTestSet$UniqueID, Probability1 = pred.mod18)
write.csv(Submission18, "Submission_mod18.csv", row.names=FALSE) #AUC
#Model 19 - same as 17 but changed depth to 1
mod19 = gbm(Popular ~. -UniqueID, data = HlTrainSet, distribution = "bernoulli",
n.trees = 5000, interaction.depth = 1, shrinkage = 0.01)
summary(mod19)
pred.train19 = predict(mod19, n.trees = 5000, type = "response")
summary(pred.train19)
table(HlTrainSet$Popular, pred.train19 >= 0.5)
(5254+683)/nrow(HlTrainSet) #accuracy: 0.90891
ROC.mod19 = prediction(pred.train19, HlTrainSet$Popular)
auc = as.numeric(performance(ROC.mod19, "auc")@y.values) #0.9367003
#Model 20 - same parameters as mod17, but excluding text data
mod20 = gbm(Popular ~ -UniqueID + WordCount + Hour + SectionName + Weekday + NewsDesk,
data = HlTrainSet,
distribution = "bernoulli", n.trees = 5000, interaction.depth = 4, shrinkage = 0.01)
summary(mod20)
pred.train20 = predict(mod20, n.trees = 5000, type = "response")
summary(pred.train20)
table(HlTrainSet$Popular, pred.train20 >= 0.5)
(5306+834)/nrow(HlTrainSet) #accuracy: 0.9399878
ROC.mod20 = prediction(pred.train20, HlTrainSet$Popular)
auc = as.numeric(performance(ROC.mod20, "auc")@y.values) #0.970011
pred.mod20 = predict(mod20, newdata = HlTestSet, n.trees = 5000, type = "response")
summary(pred.mod20)
#Make submission file for Kaggle:
Submission20 = data.frame(UniqueID = HlTestSet$UniqueID, Probability1 = pred.mod20)
write.csv(Submission20, "Submission_mod20.csv", row.names=FALSE) #AUC
#Submit models 14 (line 417), 16, 18 and 20.
#Did not try logistic regression with regularization (glmnet)
#Did not try optimizing boosting parameters (caret)
#However, in general, it seems text adds more noise than accuracy.
#Thus, I select models 11 and 9 (both RF) as best models (followed by 17, boosting)
# gbmGrid <- expand.grid(interaction.depth = 13, n.trees = 10000, shrinkage = 0.001)
# nf <- trainControl(method="cv", number=10, classProbs = TRUE, summaryFunction = twoClassSummary)
# gbmtr <- train(as.factor(Popular) ~. ,data = Train, method = "gbm",trControl = nf,
# tuneGrid=gbmGrid, metric ="ROC",verbose = T)
# install.packages('doParallel')
# library(doParallel)
# cl = makeCluster(detectCores())
# registerDoParallel(cl)
#For Mac you might want to look at doMC: http://topepo.github.io/caret/parallel.html