Skip to content

feat(explore): Add support for apdex and user misery #94919

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 5 commits into from
Jul 7, 2025
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
264 changes: 263 additions & 1 deletion src/sentry/search/eap/spans/formulas.py
Original file line number Diff line number Diff line change
Expand Up @@ -36,7 +36,11 @@
)
from sentry.search.eap.types import SearchResolverConfig
from sentry.search.eap.utils import literal_validator
from sentry.search.events.constants import WEB_VITALS_PERFORMANCE_SCORE_WEIGHTS
from sentry.search.events.constants import (
MISERY_ALPHA,
MISERY_BETA,
WEB_VITALS_PERFORMANCE_SCORE_WEIGHTS,
)
from sentry.snuba import spans_rpc
from sentry.snuba.referrer import Referrer

Expand Down Expand Up @@ -795,6 +799,234 @@ def eps(_: ResolvedArguments, settings: ResolverSettings) -> Column.BinaryFormul
)


def apdex(args: ResolvedArguments, settings: ResolverSettings) -> Column.BinaryFormula:
"""
Calculate Apdex score based on response time field and threshold.

Apdex = (Satisfactory + Tolerable/2) / Total Requests
Where:
- Satisfactory: response time ≤ T
- Tolerable: response time > T and ≤ 4T
- Frustrated: response time > 4T
"""
extrapolation_mode = settings["extrapolation_mode"]

# Get the response time field and threshold
response_time_field = cast(AttributeKey, args[0])
threshold = cast(float, args[1])

# Calculate 4T for tolerable range
tolerable_threshold = threshold * 4

# Satisfactory requests: response time ≤ T and is_transaction = True
satisfactory = Column(
conditional_aggregation=AttributeConditionalAggregation(
aggregate=Function.FUNCTION_COUNT,
key=response_time_field,
filter=TraceItemFilter(
and_filter=AndFilter(
filters=[
TraceItemFilter(
comparison_filter=ComparisonFilter(
key=response_time_field,
op=ComparisonFilter.OP_LESS_THAN_OR_EQUALS,
value=AttributeValue(val_double=threshold),
)
),
TraceItemFilter(
comparison_filter=ComparisonFilter(
key=AttributeKey(
type=AttributeKey.TYPE_BOOLEAN, name="sentry.is_segment"
),
op=ComparisonFilter.OP_EQUALS,
value=AttributeValue(val_bool=True),
)
),
]
)
),
extrapolation_mode=extrapolation_mode,
)
)

# Tolerable requests: response time > T and ≤ 4T and is_transaction = True
tolerable = Column(
conditional_aggregation=AttributeConditionalAggregation(
aggregate=Function.FUNCTION_COUNT,
key=response_time_field,
filter=TraceItemFilter(
and_filter=AndFilter(
filters=[
TraceItemFilter(
comparison_filter=ComparisonFilter(
key=response_time_field,
op=ComparisonFilter.OP_GREATER_THAN,
value=AttributeValue(val_double=threshold),
)
),
TraceItemFilter(
comparison_filter=ComparisonFilter(
key=response_time_field,
op=ComparisonFilter.OP_LESS_THAN_OR_EQUALS,
value=AttributeValue(val_double=tolerable_threshold),
)
),
TraceItemFilter(
comparison_filter=ComparisonFilter(
key=AttributeKey(
type=AttributeKey.TYPE_BOOLEAN, name="sentry.is_segment"
),
op=ComparisonFilter.OP_EQUALS,
value=AttributeValue(val_bool=True),
)
),
]
)
),
extrapolation_mode=extrapolation_mode,
)
)

# Total requests: count of all requests with the response time field and is_transaction = True
total = Column(
conditional_aggregation=AttributeConditionalAggregation(
aggregate=Function.FUNCTION_COUNT,
key=response_time_field,
filter=TraceItemFilter(
comparison_filter=ComparisonFilter(
key=AttributeKey(type=AttributeKey.TYPE_BOOLEAN, name="sentry.is_segment"),
op=ComparisonFilter.OP_EQUALS,
value=AttributeValue(val_bool=True),
)
),
extrapolation_mode=extrapolation_mode,
)
)

# Calculate (Satisfactory + Tolerable/2) / Total
numerator = Column(
formula=Column.BinaryFormula(
left=satisfactory,
op=Column.BinaryFormula.OP_ADD,
right=Column(
formula=Column.BinaryFormula(
left=tolerable,
op=Column.BinaryFormula.OP_DIVIDE,
right=Column(literal=LiteralValue(val_double=2.0)),
)
),
)
)

return Column.BinaryFormula(
left=numerator,
op=Column.BinaryFormula.OP_DIVIDE,
right=total,
)


def user_misery(args: ResolvedArguments, settings: ResolverSettings) -> Column.BinaryFormula:
"""
Calculate User Misery score based on response time field and threshold.

User Misery = (miserable_users + α) / (total_unique_users + α + β)
Where:
- miserable_users: unique users with response time > 4T
- total_unique_users: total unique users with response time field
- α (MISERY_ALPHA) = 5.8875
- β (MISERY_BETA) = 111.8625
"""
extrapolation_mode = settings["extrapolation_mode"]

# Get the response time field and threshold
response_time_field = cast(AttributeKey, args[0])
threshold = cast(float, args[1])

# Calculate 4T for miserable threshold
miserable_threshold = threshold * 4

# Count miserable users: unique users with response time > 4T and is_transaction = True
miserable_users = Column(
conditional_aggregation=AttributeConditionalAggregation(
aggregate=Function.FUNCTION_UNIQ,
key=AttributeKey(type=AttributeKey.TYPE_STRING, name="sentry.user"),
filter=TraceItemFilter(
and_filter=AndFilter(
filters=[
TraceItemFilter(
comparison_filter=ComparisonFilter(
key=response_time_field,
op=ComparisonFilter.OP_GREATER_THAN,
value=AttributeValue(val_double=miserable_threshold),
)
),
TraceItemFilter(
comparison_filter=ComparisonFilter(
key=AttributeKey(
type=AttributeKey.TYPE_BOOLEAN, name="sentry.is_segment"
),
op=ComparisonFilter.OP_EQUALS,
value=AttributeValue(val_bool=True),
)
),
]
)
),
extrapolation_mode=extrapolation_mode,
)
)

# Count total unique users: unique users with response time field and is_transaction = True
total_unique_users = Column(
conditional_aggregation=AttributeConditionalAggregation(
aggregate=Function.FUNCTION_UNIQ,
key=AttributeKey(type=AttributeKey.TYPE_STRING, name="sentry.user"),
filter=TraceItemFilter(
and_filter=AndFilter(
filters=[
TraceItemFilter(
exists_filter=ExistsFilter(key=response_time_field),
),
TraceItemFilter(
comparison_filter=ComparisonFilter(
key=AttributeKey(
type=AttributeKey.TYPE_BOOLEAN, name="sentry.is_segment"
),
op=ComparisonFilter.OP_EQUALS,
value=AttributeValue(val_bool=True),
)
),
]
)
),
extrapolation_mode=extrapolation_mode,
)
)

# Calculate (miserable_users + α) / (total_unique_users + α + β)
numerator = Column(
formula=Column.BinaryFormula(
left=miserable_users,
op=Column.BinaryFormula.OP_ADD,
right=Column(literal=LiteralValue(val_double=MISERY_ALPHA)),
)
)

denominator = Column(
formula=Column.BinaryFormula(
left=total_unique_users,
op=Column.BinaryFormula.OP_ADD,
right=Column(literal=LiteralValue(val_double=MISERY_ALPHA + MISERY_BETA)),
)
)

return Column.BinaryFormula(
left=numerator,
op=Column.BinaryFormula.OP_DIVIDE,
right=denominator,
)


SPAN_FORMULA_DEFINITIONS = {
"http_response_rate": FormulaDefinition(
default_search_type="percentage",
Expand Down Expand Up @@ -987,4 +1219,34 @@ def eps(_: ResolvedArguments, settings: ResolverSettings) -> Column.BinaryFormul
"eps": FormulaDefinition(
default_search_type="rate", arguments=[], formula_resolver=eps, is_aggregate=True
),
"apdex": FormulaDefinition(
default_search_type="number",
infer_search_type_from_arguments=False,
arguments=[
AttributeArgumentDefinition(
attribute_types={
"duration",
*constants.DURATION_TYPE,
},
),
ValueArgumentDefinition(argument_types={"number"}),
],
formula_resolver=apdex,
is_aggregate=True,
),
"user_misery": FormulaDefinition(
default_search_type="number",
infer_search_type_from_arguments=False,
arguments=[
AttributeArgumentDefinition(
attribute_types={
"duration",
*constants.DURATION_TYPE,
},
),
ValueArgumentDefinition(argument_types={"number"}),
],
formula_resolver=user_misery,
is_aggregate=True,
),
}
Loading
Loading