-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathfunctions.py
291 lines (228 loc) · 11.6 KB
/
functions.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
"""Module with shared functions for the app"""
from datetime import datetime, timedelta
import requests
import pandas as pd
import matplotlib.pyplot as plt
import numpy as np
import seaborn as sns
# Function to compute buy/sell recommendations
def compute_buy_sell_recommendations(
current_portfolio, acct, highest_sharpe_weights, stocks, stock_history
):
"""Function to compute buy/sell recommendations"""
# Convert weights to desired monetary value in the portfolio
desired_values = np.array(highest_sharpe_weights) * acct # Convert to NumPy array
# Get the latest stock prices
current_prices = {stock: stock_history[stock].iloc[1] for stock in stocks}
# Calculate desired shares (decimal value)
desired_shares_decimal = {
stock: desired_values[i] / current_prices[stock] for i, stock in enumerate(stocks)}
# Calculate Buy/Sell (rounded value)
buy_sell_shares = \
{stock: (desired_shares_decimal[stock]) -
current_portfolio[current_portfolio['Symbol'] == stock]['Shares'].values[0]
for stock in stocks}
# Merge current portfolio with desired shares
merged_portfolio = current_portfolio.merge(pd.DataFrame(
buy_sell_shares.items(), columns=['Symbol', 'Buy/Sell']), on='Symbol')
# Calculate other columns
merged_portfolio['CurrentSharePrice'] = merged_portfolio['Symbol'].map(
current_prices)
merged_portfolio['TargetValue'] = merged_portfolio['Symbol'].map(
dict(zip(stocks, desired_values)))
merged_portfolio['TargetValue'] = merged_portfolio['TargetValue'].round(2)
merged_portfolio['CurrentValue'] = merged_portfolio['Shares'] * \
merged_portfolio['CurrentSharePrice']
merged_portfolio['CurrentValue'] = merged_portfolio['CurrentValue'].round(
2)
merged_portfolio['Buy/Sell'] = (merged_portfolio['Buy/Sell']).round(0)
merged_portfolio['SharesAfterAction'] = merged_portfolio['Shares'] + \
merged_portfolio['Buy/Sell']
merged_portfolio['ValueAfterAction'] = merged_portfolio['SharesAfterAction'] * \
merged_portfolio['CurrentSharePrice']
merged_portfolio['ValueAfterAction'] = merged_portfolio['ValueAfterAction'].round(
2)
merged_portfolio['TargetSharpeWeight'] = merged_portfolio['Symbol'].map(
dict(zip(stocks, highest_sharpe_weights))) * 100
merged_portfolio['ActualWeightAfterAction'] = merged_portfolio['ValueAfterAction'] / \
(merged_portfolio['ValueAfterAction'].sum()) * \
100 # Convert to percentage
# Sort dataframe by 'Buy/Sell' column with negative values first
merged_portfolio = merged_portfolio.sort_values(
by='Buy/Sell', ascending=True) # Sell first, settle, then buy
return merged_portfolio[['Symbol', 'Buy/Sell', 'CurrentSharePrice', 'CurrentValue',
'Shares', 'TargetValue', 'ValueAfterAction', 'SharesAfterAction',
'TargetSharpeWeight', 'ActualWeightAfterAction']]
def get_treasury_data(api_key):
"""Function to get the latest stock prices"""
# Get today's date
today = datetime.today()
# Check if today is Monday (0 = Monday, 1 = Tuesday, ..., 6 = Sunday)
if today.weekday() in [0, 6]:
# If today is Monday, set from_date to the previous Friday
from_date = (today - timedelta(days=3)).strftime('%Y-%m-%d')
else:
# Otherwise, set from_date to yesterday
from_date = (today - timedelta(days=1)).strftime('%Y-%m-%d')
# Format the dates in 'YYYY-MM-DD' format
to_date = today.strftime('%Y-%m-%d')
# Construct the URI
base_url = "https://financialmodelingprep.com/api/v4/treasury"
url = f"?from={from_date}&to={to_date}&apikey={api_key}"
uri = f"{base_url}{url}"
# Make the GET request
response = requests.get(uri, timeout=10)
# Return the JSON response
return response.json()
def get_stock_history(stocks, number_of_days, api_key):
"""Function to get the latest stock prices"""
stock_history = {}
base_url = 'https://financialmodelingprep.com/api/v3/historical-price-full/'
for stock in stocks:
url = f'{base_url}{stock}?serietype=line&apikey={api_key}'
try:
response = requests.get(url, timeout=10)
# Will raise an HTTPError if the HTTP request returned an unsuccessful status code
response.raise_for_status()
prices = response.json()
prices_df = pd.DataFrame(prices['historical'])
# Ensure the data is sorted by date in descending order (most recent first)
prices_df['date'] = pd.to_datetime(prices_df['date'])
prices_df = prices_df.sort_values('date', ascending=False)
# Select closing prices for the chosen number of days
recent_prices = prices_df.head(number_of_days).set_index('date')['close']
stock_history[stock] = recent_prices
except requests.exceptions.HTTPError as http_err:
print(f"HTTP error occurred: {http_err}")
except requests.exceptions.RequestException as req_err:
print(f"Request error occurred: {req_err}")
except KeyError:
print(f"Error: No data found for stock {stock}")
return stock_history
def get_return_stocks(stock_history):
"""Function to get returns for the latest stock prices"""
# Concatenate all stock close prices into a single dataframe
portfolio = pd.concat(stock_history, axis=1)
# Calculate daily returns
return_stocks = portfolio.pct_change().dropna()
# Return the daily returns and stock history
return return_stocks
def get_montecarlo_simulation(args):
"""
Calculate the portfolio returns, risks, Sharpe ratios,
and weights for a given set of parameters.
Args:
args (dict): Dictionary containing the following keys:
- number_of_portfolios (int): The number of portfolios to simulate.
- stocks (list): List of stock tickers.
- return_stocks (DataFrame): DataFrame containing the stock returns.
- trading_days (int): The number of trading days in a year.
- rf (float): The risk-free rate.
- risk (float): The maximum acceptable portfolio risk.
Returns:
DataFrame: A DataFrame containing the portfolio returns, risks, Sharpe ratios, and weights.
"""
number_of_portfolios, stocks, return_stocks, trading_days, rf, risk = args.values()
matrix_covariance_portfolio = (return_stocks.cov()) * trading_days
portfolios = {
'returns': [],
'risks': [],
'sharpes': [],
'weights': [],
}
for _ in range(number_of_portfolios):
weights = np.random.random_sample(len(stocks))
weights /= np.sum(weights)
returns = np.sum((return_stocks.mean() * weights) * trading_days) - rf
portfolios['returns'].append(returns)
portfolio_variance = np.dot(weights.T, np.dot(matrix_covariance_portfolio, weights))
portfolios['risks'].append(np.sqrt(portfolio_variance))
portfolios['sharpes'].append((returns - rf) / np.sqrt(portfolio_variance))
portfolios['weights'].append(weights)
indices_within_risk = np.where(np.array(portfolios['risks']) <= risk)[0]
df = pd.DataFrame({
'Port Returns': np.array(portfolios['returns'])[indices_within_risk],
'Port Risk': np.array(portfolios['risks'])[indices_within_risk],
'Sharpe Ratio': np.array(portfolios['sharpes'])[indices_within_risk],
'Portfolio Weights': np.array(portfolios['weights'])[indices_within_risk].tolist(),
})
for col in ['Port Returns', 'Port Risk', 'Sharpe Ratio']:
df[col] = df[col].astype(float)
return df
def get_recommendations(portfolio_dfs, current_portfolio, acct, stocks, stock_history):
"""Function to get the rebalance recommendations"""
highest_sharpe_port = portfolio_dfs.iloc[portfolio_dfs['Sharpe Ratio'].idxmax()]
highest_sharpe_weights = highest_sharpe_port['Portfolio Weights']
# Get buy/sell recommendations
recommendations = compute_buy_sell_recommendations(
current_portfolio, acct, highest_sharpe_weights, stocks, stock_history)
recommendations = recommendations.loc[(recommendations['CurrentValue']
!= recommendations['ValueAfterAction']) |
((recommendations['CurrentValue'] != 0) &
(recommendations['ValueAfterAction'] != 0))]
return recommendations
def plot_portfolio_metrics(portfolio_dfs, number_of_portfolios, acct, rf, risk):
"""Function to plot the portfolio metrics (returns, risk, sharpe ratio)"""
highest_sharpe_port = portfolio_dfs.iloc[portfolio_dfs['Sharpe Ratio'].idxmax()]
# First Graphic: Text String Block
_, ax1 = plt.subplots(figsize=(15, 5))
# Add text annotations
textstr = "Portfolio Metrics for the Highest Sharpe Ratio Portfolio:\n\n"
textstr += f"Number of portfolios analyzed: {number_of_portfolios}\n"
textstr += f"Returns: {highest_sharpe_port['Port Returns'] * 100:.2f}%\n"
textstr += f"Risk (Standard Deviation): {highest_sharpe_port['Port Risk'] * 100:.2f}%\n"
textstr += f"Sharpe Ratio: {highest_sharpe_port['Sharpe Ratio']:.2f}\n\n"
textstr += f"Portfolio Value: ${acct:.2f}\n"
textstr += f"Risk Free Rate: {rf * 100:.2f}%\n\n"
textstr += f"Selected Risk Tolerance: {risk * 100:.2f}%:\n"
# Place the text on the figure
ax1.text(0.05, 0.7, textstr, transform=ax1.transAxes, fontsize=12, verticalalignment='top',
horizontalalignment='left')
# Hide the axes
ax1.axis('off')
# Show the figure
plt.show()
def plot_portfolio_changes(recommendations):
"""Function to plot the portfolio changes"""
# Round and format the values in the specified columns
recommendations['Shares'] = recommendations['Shares'].apply(lambda x: f"{x:.4f}")
recommendations['SharesAfterAction'] = recommendations['SharesAfterAction'] \
.apply(lambda x: f"{x:.4f}")
recommendations['TargetSharpeWeight'] = recommendations['TargetSharpeWeight'].round(2)
recommendations['ActualWeightAfterAction'] = recommendations['ActualWeightAfterAction'].round(2)
# Second Graphic: Table of Recommendations
_, ax2 = plt.subplots(figsize=(15, 5))
# Create a table for the recommendations
table_data = []
columns = recommendations.columns.tolist()
table_data.append(columns)
for row in recommendations.itertuples():
table_data.append(row[1:])
# Add table to the figure
_ = ax2.table(cellText=table_data, loc='center', cellLoc='center', colWidths=[0.2]
* len(columns), bbox=[0, 0, 1, 1],
fontsize=18)
# Hide the axes
ax2.axis('off')
# Show the figure
plt.show()
def plot_risk_scatterplot(portfolio_dfs):
"""Function to create a dataframe with the returns and risk value for each portfolio"""
portfolio_returns = portfolio_dfs['Port Returns']
portfolio_risk = portfolio_dfs['Port Risk']
plt.figure(figsize=(15, 15))
plt.scatter(portfolio_risk, portfolio_returns, c=portfolio_returns / portfolio_risk)
plt.xlabel('Volatility (Risk)')
plt.ylabel('Returns')
plt.colorbar(label='Sharpe ratio')
plt.title('Tested Portfolios (Returns vs Volatility)')
plt.show()
def plot_correlation_matrix(return_stocks):
"""Function to plot the correlation matrix"""
# Calculate the correlation matrix
correlation_matrix = return_stocks.corr()
# Visualize the correlation matrix using a heatmap
plt.figure(figsize=(15, 15))
sns.heatmap(correlation_matrix, annot=True, cmap="coolwarm", linewidths=0.5)
plt.title("Correlation Matrix of Asset Returns")
plt.show()