@@ -343,8 +343,8 @@ \subsection{Conversion Rules}
343
343
\end {center }
344
344
In addition to the above convertibility rules, we also allow identifying a term
345
345
$ t$ of type $ \cfa {x}{t}{U}$ with its \emph {$ \eta $ -expansion } $ \clm {x}{T}{(t x)}$
346
- for $ x$ fresh in $ t$ . Note \emph {$ \eta $ -reduction } is deliberately not defined
347
- ( TODO: show example?).
346
+ for $ x$ fresh in $ t$ . Note \emph {$ \eta $ -reduction } is deliberately not defined.
347
+ % TODO: show example?
348
348
349
349
\begin {notation }
350
350
We write $ E[\Gamma ] \vdash t \red u$ for the contextual closure of the rules
@@ -365,7 +365,22 @@ \subsection{Conversion Rules}
365
365
\[ E[\Gamma ] \vdash t_1 \red \ldots \red u_1 \text { and } E[\Gamma ] \vdash t_2 \red \ldots \red u_2 \]
366
366
and either $ u_1 $ and $ u_2 $ are identical up irrelevant subterms, or they are
367
367
convertible up to $ \eta $ -exxpansion. We denote this as
368
- $ E[\Gamma ] \vdash t_1 =_{ \beta\delta\iota\zeta\eta } t_2 $
368
+ $ E[\Gamma ] \vdash t_1 \conveq t_2 $
369
369
\end {definition }
370
370
371
+ \subsection {Subtyping Rules }
372
+ The \emph {subtyping } relation is inductively defined as follows:
373
+ % TODO: display as proof rules?
374
+ \begin {itemize }
375
+ \item if $ E[\Gamma ] \vdash t \conveq u$ , then $ E[\Gamma ] \vdash t \subty u$
376
+ \item if $ i \leq j$ , then $ E[\Gamma ] \vdash \Type (i) \subty \Type (j)$
377
+ \item $ E[\Gamma ] \vdash \Set \subty \Type (i)$ for all $ i$
378
+ \item $ E[\Gamma ] \vdash \Prop \subty \Set $
379
+ \item if $ E[\Gamma ] \vdash T \conveq U$ and
380
+ $ E[\Gamma \dcln (\lasm {x}{T})] \vdash T' \subty U'$ , then
381
+ $ E[\Gamma ] \vdash \cfa {x}{T}{T'} \subty \cfa {x}{U}{U'}$
382
+ \end {itemize }
383
+
384
+ \subsection {Conversion/Subtyping: Polymorphic Universes }
385
+
371
386
\end {document }
0 commit comments