-
Notifications
You must be signed in to change notification settings - Fork 87
/
Copy patheval_iou_accuracy.py
73 lines (57 loc) · 2.15 KB
/
eval_iou_accuracy.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
import numpy as np
import argparse
import os
parser = argparse.ArgumentParser()
parser.add_argument('--area', type=int, default=-1, help='Which area to use (default: -1 [all areas])')
parser.add_argument('--folder', type=str, default='', help='folder (default: ./)')
parser.add_argument('--path', type=str, default='', help='path (default: ./')
parser.add_argument('--num_classes', type=int, default=13, help='Number of classes (default: 13)')
FLAGS = parser.parse_args()
AREA = FLAGS.area
FOLDER = FLAGS.folder
PATH = FLAGS.path
NUM_CLASSES = FLAGS.num_classes
print(FLAGS)
if AREA>0:
start_idx = AREA
end_idx = AREA+1
else:
start_idx = 1
end_idx = 7
for a in range(start_idx,end_idx):
print("Area: ", a)
pred_data_label_filenames = []
file_name = os.path.join(PATH, FOLDER, 'log{}/output_filelist.txt'.format(a))
pred_data_label_filenames += [os.path.join(PATH, line.rstrip()) for line in open(file_name)]
gt_label_filenames = [f.rstrip('_pred\.txt') + '_gt.txt' for f in pred_data_label_filenames]
num_room = len(gt_label_filenames)
gt_classes = [0 for _ in range(NUM_CLASSES)]
positive_classes = [0 for _ in range(NUM_CLASSES)]
true_positive_classes = [0 for _ in range(NUM_CLASSES)]
for i in range(num_room):
print(i)
data_label = np.loadtxt(pred_data_label_filenames[i])
pred_label = data_label[:,-1]
gt_label = np.loadtxt(gt_label_filenames[i])
print(gt_label.shape)
for j in range(gt_label.shape[0]):
gt_l = int(gt_label[j])
pred_l = int(pred_label[j])
gt_classes[gt_l] += 1
positive_classes[pred_l] += 1
true_positive_classes[gt_l] += int(gt_l==pred_l)
print(gt_classes)
print(positive_classes)
print(true_positive_classes)
print('Overall accuracy: {0}'.format(sum(true_positive_classes)/float(sum(positive_classes))))
print('IoU:')
iou_list = []
for i in range(NUM_CLASSES):
if float(gt_classes[i]+positive_classes[i]-true_positive_classes[i]) > 0:
iou = true_positive_classes[i]/float(gt_classes[i]+positive_classes[i]-true_positive_classes[i])
else:
iou = -1
print(iou)
iou_list.append(iou)
print('avg IoU:')
print(sum(iou_list)/float(NUM_CLASSES))