Skip to content

Commit 52c1ee7

Browse files
committed
update
1 parent 525de30 commit 52c1ee7

9 files changed

+25
-25
lines changed

images/SingleSlipModel.png

0 Bytes
Loading

images/SingleSlipModel_01.png

288 KB
Loading

images/SingleSlipModel_02.png

-74.7 KB
Loading

images/SingleSlipModel_03.png

-180 KB
Loading

images/SingleSlipModel_04.png

1.29 KB
Loading

images/SingleSlipModel_05.png

-2.01 KB
Loading

images/SingleSlipModel_07.png

60.3 KB
Loading

pages/documentation_matlab/SingleSlipModel.html

Lines changed: 22 additions & 22 deletions
Original file line numberDiff line numberDiff line change
@@ -81,22 +81,21 @@
8181
{% endhighlight %}
8282

8383
{% highlight matlab %}
84-
% We may visualize the orientation depedence of the spin tensor as a quiver
85-
% plot
86-
plot(Omega,'section','sigma')
87-
{% endhighlight %}
88-
<center>
89-
{% include inline_image.html file="SingleSlipModel_01.png" %}
90-
</center><p>or as the divergence of this vectorfield</p>
91-
{% highlight matlab %}
92-
plotSection(div(Omega),'sigma')
84+
% We may visualize the orientation depedence of the spin tensor by plotting
85+
% its divergence in sigma sections and on top of it the spin tensors as a
86+
% quiver plot
9387

88+
plotSection(div(Omega),'sigma','noGrid')
9489
mtexColorMap blue2red
9590
mtexColorbar
91+
92+
hold on
93+
plot(Omega,'add2all','linewidth',1,'color','k')
94+
hold off
9695
{% endhighlight %}
9796
<center>
98-
{% include inline_image.html file="SingleSlipModel_02.png" %}
99-
</center><p>The divergence plots can be read as follows. Negative (blue) regions indicate orientations that increase in volume, whereas positive regions indicate orientations that decrease in volume. Accordingly, we expect the texture to become more and more concentrated within the blue regions. In the example example illustrated above with only the second slip system beeing active, we would expect the c-axis to align more and more with the the z-direction.</p><h2 id="10">Solutions of the Continuity Equation</h2><p>The solutions of the continuity equation can be analytically computed and are available via the command <a href="SO3FunSBF.SO3FunSBF.html"><code class="language-plaintext highlighter-rouge">SO3FunSBF</code></a>. This command takes as input the specific slips system <code class="language-plaintext highlighter-rouge">sS</code> and the makroscopic strain tensor <code class="language-plaintext highlighter-rouge">E</code></p>
97+
{% include inline_image.html file="SingleSlipModel_01.png" %}
98+
</center><p>The divergence plots can be read as follows. Negative (blue) regions indicate orientations that increase in volume, whereas positive regions indicate orientations that decrease in volume. Accordingly, we expect the texture to become more and more concentrated within the blue regions. In the example example illustrated above with only the second slip system beeing active, we would expect the c-axis to align more and more with the the z-direction.</p><h2 id="9">Solutions of the Continuity Equation</h2><p>The solutions of the continuity equation can be analytically computed and are available via the command <a href="SO3FunSBF.SO3FunSBF.html"><code class="language-plaintext highlighter-rouge">SO3FunSBF</code></a>. This command takes as input the specific slips system <code class="language-plaintext highlighter-rouge">sS</code> and the makroscopic strain tensor <code class="language-plaintext highlighter-rouge">E</code></p>
10099
{% highlight matlab %}
101100
odf1 = SO3FunSBF(sSOli(1),E)
102101
odf2 = SO3FunSBF(sSOli(2),E)
@@ -130,43 +129,44 @@
130129
plotSection(odf2,'sigma')
131130
{% endhighlight %}
132131
<center>
133-
{% include inline_image.html file="SingleSlipModel_03.png" %}
134-
</center><p>Lets visualize these solution by their pole figures</p>
132+
{% include inline_image.html file="SingleSlipModel_02.png" %}
133+
</center><p>We observe exactly the concentration of the c-axis around z as predicted by the model. This can be seen even more clear when looking a the pole figures</p>
135134
{% highlight matlab %}
136135
h = Miller({1,0,0},{0,1,0},{0,0,1},csOli);
137-
plotPDF(odf1,h,'resolution',2*degree,'colorRange','equal')
136+
137+
plotPDF(odf2,h,'resolution',2*degree,'colorRange','equal')
138138
mtexColorbar
139139
{% endhighlight %}
140140
<center>
141-
{% include inline_image.html file="SingleSlipModel_04.png" %}
142-
</center>
141+
{% include inline_image.html file="SingleSlipModel_03.png" %}
142+
</center><p>For completeness the pole figures of the other two basis functions.</p>
143143
{% highlight matlab %}
144-
plotPDF(odf2,h,'resolution',2*degree,'colorRange','equal')
144+
plotPDF(odf1,h,'resolution',2*degree,'colorRange','equal')
145145
mtexColorbar
146146
{% endhighlight %}
147147
<center>
148-
{% include inline_image.html file="SingleSlipModel_05.png" %}
148+
{% include inline_image.html file="SingleSlipModel_04.png" %}
149149
</center>
150150
{% highlight matlab %}
151151
plotPDF(odf3,h,'resolution',2*degree,'colorRange','equal')
152152
mtexColorbar
153153
{% endhighlight %}
154154
<center>
155-
{% include inline_image.html file="SingleSlipModel_06.png" %}
155+
{% include inline_image.html file="SingleSlipModel_05.png" %}
156156
</center><p>We observe that the pole figure with respect to \(n \times b\) is always uniform, where \(n\) is the slip normal and \(b\) is the slip direction.</p><p>Since in practice all three slip systems are active we can model the resulting ODF as a linear combination of the different basis functions</p>
157157
{% highlight matlab %}
158158
plotPDF(odf1 + odf2 + odf3,h,'resolution',2*degree,'colorRange','equal')
159159
mtexColorbar
160160
{% endhighlight %}
161161
<center>
162-
{% include inline_image.html file="SingleSlipModel_07.png" %}
163-
</center><h2 id="17">Checking the for steady state</h2><p>We may also check for which orientations an ODF is already in a steady state of the continous equation, i.e., the time derivative \(\text{div}(f \Omega) = 0\) is zero.</p>
162+
{% include inline_image.html file="SingleSlipModel_06.png" %}
163+
</center><h2 id="16">Checking the for steady state</h2><p>We may also check for which orientations an ODF is already in a steady state of the continous equation, i.e., the time derivative \(\text{div}(f \Omega) = 0\) is zero.</p>
164164
{% highlight matlab %}
165165
plotSection(div(odf2 .* Omega),'sigma')
166166
mtexColorMap blue2red
167167
mtexColorbar
168168
setColorRange(max(abs(clim))*[-1,1])
169169
{% endhighlight %}
170170
<center>
171-
{% include inline_image.html file="SingleSlipModel_08.png" %}
171+
{% include inline_image.html file="SingleSlipModel_07.png" %}
172172
</center></div></body></html>

pages/documentation_matlab/TwinningBoundaries.html

Lines changed: 3 additions & 3 deletions
Original file line numberDiff line numberDiff line change
@@ -110,11 +110,11 @@ <h2 id="4">Properties of grain boundaries</h2><p>A variable of type grain bounda
110110

111111
Bunge Euler angles in degree
112112
phi1 Phi phi2
113-
90.5949 86.0962 269.995
113+
209.646 93.9045 210.23
114114

115115

116-
plane parallel direction parallel fit
117-
(01-1-1) || (-110-1) [10-11] || [10-1-1] 0.628°
116+
plane parallel direction parallel fit
117+
(1-10-1) || (10-11) [01-1-1] || [1-10-1] 0.48°
118118
{% endhighlight %}
119119
<p>Bases on the output above we may now define the special orientation relationship as</p>
120120
{% highlight matlab %}

0 commit comments

Comments
 (0)