You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
edit page</a></font><div><!--introduction--><p>Details to this model can be found in</p><div><ul><li><ahref="https://doi.org/10.1093/gji/ggy442">An analytical finite-strain parametrization for texture evolution in deforming olivine polycrystals</a>, Geoph. J. Intern. 216, 2019.</li></ul></div><!--/introduction--><h2id="1">The Continuity Equation</h2><p>The evolution of the orientation distribution function (ODF) \(f(g)\) with respect to a crystallopgraphic spin \(\Omega(g)\) is governed by the continuity equation</p><p>\[\frac{\partial}{\partial t} f + \nabla f \cdot \Omega + f \text{div} \Omega = 0\]</p><p>The solution of this equation depends on the initial texture \(f_0(g)\) at time zero and the crystallographic spin \(\Omega(g)\). In this model we assume the initial texture to be isotrope, i.e., \(f_0 = 1\) and the crystallopgraphic spin be associated with a single slip system. The full ODF will be later modelled as a superposition of the single slip models.</p><p>In this example we consider Olivine with has orthorhombic symmetry</p>
15
+
edit page</a></font><div><!--introduction--><p>Details to this model can be found in</p><div><ul><li><ahref="https://doi.org/10.1093/gji/ggy442">An analytical finite-strain parametrization for texture evolution in deforming olivine polycrystals</a>, Geoph. J. Intern. 216, 2019.</li></ul></div><!--/introduction--><h2id="1">The Continuity Equation</h2><p>The evolution of the orientation distribution function (ODF) \(f(g)\) with respect to a crystallopgraphic spin \(\Omega(g)\) is governed by the continuity equation</p><p>\[\frac{\partial}{\partial t} f + \nabla f \cdot \Omega + f \text{ div } \Omega = 0\]</p><p>The solution of this equation depends on the initial texture \(f_0(g)\) at time zero and the crystallographic spin \(\Omega(g)\). In this model we assume the initial texture to be isotrope, i.e., \(f_0 = 1\) and the crystallopgraphic spin be associated with a single slip system. The full ODF will be later modelled as a superposition of the single slip models.</p><p>In this example we consider Olivine with has orthorhombic symmetry</p>
<p>We may visualize the orientation depedence of the spin tensor via</p>
65
63
{% highlight matlab %}
@@ -69,7 +67,7 @@
69
67
{% include inline_image.html file="SingleSlipModel_01.png" %}
70
68
</center><p>or the divergence of this vectorfield</p>
71
69
{% highlight matlab %}
72
-
plot(div(Omega),'sigma')
70
+
plot(div(SO3VectorFieldHarmonic(Omega)))
73
71
{% endhighlight %}
74
72
<center>
75
73
{% include inline_image.html file="SingleSlipModel_02.png" %}
@@ -125,18 +123,11 @@
125
123
{% endhighlight %}
126
124
<center>
127
125
{% include inline_image.html file="SingleSlipModel_06.png" %}
128
-
</center><h2id="15">Checking the Continuity Equation</h2><p>We may now check wether the continuity equation is satisfied. In a stable state the time difference will be zero and hence \(f \text{div}\Omega\)</p>
126
+
</center><h2id="15">Checking the Continuity Equation</h2><p>We may now check wether the continuity equation is satisfied. In a stable state the time difference will be zero and hence \(\text{div}(f \Omega) = 0\)</p><p>TODO: this is currently not working and we do not know why!</p>
129
127
{% highlight matlab %}
130
-
figure(1)
131
-
plot(odf1 .* div(Omega),'sigma')
128
+
plot(div(SO3VectorFieldHarmonic(Omega .* odf1)))
129
+
mtexColorbar('location','south')
132
130
{% endhighlight %}
133
131
<center>
134
132
{% include inline_image.html file="SingleSlipModel_07.png" %}
135
-
</center><p>should be the negative of the inner product \(\nabla f \cdot \Omega\)</p>
136
-
{% highlight matlab %}
137
-
figure(2)
138
-
plot(dot(grad(odf1),Omega),'sigma')
139
-
{% endhighlight %}
140
-
<center>
141
-
{% include inline_image.html file="SingleSlipModel_08.png" %}
0 commit comments