-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
303 lines (236 loc) · 9.06 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
import random
from glob import glob
import os
from PIL import Image
from PIL import ImageFile
ImageFile.LOAD_TRUNCATED_IMAGES = True
import time
import numpy as np
import importlib
import math
import logging
import torch
import torchvision
import torch.nn.functional as F
import torch.optim as optim
from tensorboardX import SummaryWriter
from torchvision import transforms
import torch.nn as nn
from Common.util import save_checkpoint, psnr, tensor2img, print_loss, show_in_board
import config as config
from Common.write_bin import read_from_bin, write_to_bin
from data.dataset_noise_mix import DataLoader_Noise_domain_noise
from model import create_model
from data.test_dataload import data_load, data_load_same_name
os.environ['CUDA_LAUNCH_BLOCKING'] = "1"
torch.backends.cudnn.deterministic = True
logger = logging.getLogger(config.args.model)
logger.setLevel(level=logging.INFO)
formatter = logging.Formatter('%(asctime)s - %(levelname)s %(message)s')
stdhandler = logging.StreamHandler()
stdhandler.setFormatter(formatter)
logger.addHandler(stdhandler)
if not os.path.exists('./ckpt/log/'):
os.makedirs('./ckpt/log/')
filehandler = logging.FileHandler(
f'./ckpt/log/{config.args.model}_{config.args.label_str}_{config.args.lmbda}.log')
filehandler.setFormatter(formatter)
logger.addHandler(filehandler)
writer = SummaryWriter(f'./log/{config.args.model}/{config.args.label_str}/{str(config.args.lmbda)}')
def train_one_epoch(opt, model, train_dataloader, optimizer,
aux_optimizer, epoch):
global step
model.train()
device = next(model.parameters()).device
step = 0
print_in = opt.print_num
for i, (p_im, d_im1, d_im2) in enumerate(train_dataloader):
p_im = p_im.to(device)
d_im1 = d_im1.to(device)
d_im2 = d_im2.to(device)
optimizer.zero_grad()
aux_optimizer.zero_grad()
out_net = model(d_im1, d_im2)
out_criterion = model.loss(out_net, p_im, d_im1, d_im2, opt.lmbda)
out_criterion["loss"].backward()
if opt.clip_max_norm > 0:
torch.nn.utils.clip_grad_norm_(model.parameters(), opt.clip_max_norm)
optimizer.step()
aux_loss = model.aux_loss()
aux_loss.backward()
aux_optimizer.step()
out_criterion["aux_loss"] = aux_loss
if step % print_in == 0:
print_str = f"{opt.model} {opt.label_str} {opt.lmbda} Train epoch {epoch}: [{i * len(d_im1)}/{len(train_dataloader.dataset)} ({100. * i / len(train_dataloader):.0f}%)]"
print_l = print_loss(out_criterion)
logger.info(print_str + print_l)
show_in_board(
writer,
out_net,
step,
d_im1=d_im1,
d_im2=d_im2,
p_im=p_im)
writer.add_scalar("Loss/Train/aux_loss", aux_loss, step)
for kk in out_criterion:
writer.add_scalar(
f"Loss/Train/{out_criterion[kk]}",
out_criterion[kk],
step)
step = step + 1
def train(opt):
if opt.seed is not None:
torch.manual_seed(opt.seed) # fix the random values
random.seed(opt.seed)
train_dataloader = DataLoader_Noise_domain_noise(
opt.train_img_dataset,
opt.train_real_dataset,
opt.image_size,
opt.batch_size)
device = "cuda" if opt.cuda and torch.cuda.is_available() else "cpu"
net = create_model(opt)
net = net.to(device)
parameters = set(p for n, p in net.named_parameters()
if not n.endswith(".quantiles"))
aux_parameters = set(p for n, p in net.named_parameters()
if n.endswith(".quantiles"))
optimizer = optim.Adam(parameters, lr=opt.learning_rate)
aux_optimizer = optim.Adam(aux_parameters, lr=opt.aux_learning_rate)
begin_epoch = 0
if opt.restore == True:
checkpoint = torch.load(opt.ckpt)
net.load_state_dict(checkpoint['state_dict'])
aux_optimizer.load_state_dict(checkpoint['aux_optimizer'])
begin_epoch = checkpoint['epoch']
for epoch in range(begin_epoch, opt.epochs):
if opt.save:
net.update(force=True)
save_checkpoint(
{
"epoch": epoch + 1,
"state_dict": net.state_dict(),
"optimizer": optimizer.state_dict(),
"aux_optimizer": aux_optimizer.state_dict()
},
save_path=f"./ckpt/{opt.model}/{opt.label_str}/{str(config.args.lmbda)}/",
filename="{:0>4d}.pth.tar".format(epoch)
)
train_one_epoch(
opt,
net,
train_dataloader,
optimizer,
aux_optimizer,
epoch
)
def test_img(model, x, p_x, save_name, lmbda, label):
model.eval()
x = x.unsqueeze(0)
p_x = p_x.unsqueeze(0)
x = x.cuda()
p_x = p_x.cuda()
h, w = x.size(2), x.size(3)
p = 64 # maximum 6 strides of 2
new_h = (h + p - 1) // p * p
new_w = (w + p - 1) // p * p
padding_left = (new_w - w) // 2
padding_right = new_w - w - padding_left
padding_top = (new_h - h) // 2
padding_bottom = new_h - h - padding_top
x_padded = F.pad(
x,
(padding_left, padding_right, padding_top, padding_bottom),
mode="constant",
value=0.0,
)
out_enc = model.compress(x_padded)
save_path = (save_name.replace(label, label+'_bin')).replace('.png', '.bin')
if not os.path.exists(os.path.dirname(save_path)):
os.makedirs(os.path.dirname(save_path))
write_to_bin(out_enc, h=h, w=w, save_path=save_path, lmbda=lmbda)
bits_bin = os.path.getsize(save_path)
bits_bin = bits_bin * 8
num_pixels = x.size(0) * x.size(2) * x.size(3)
pixel_bits = bits_bin / num_pixels
strings, original_size, shape, lmbda = read_from_bin(save_path)
out_dec = model.decompress(strings, shape)
out_dec["im_x_hat"] = F.pad(
out_dec["im_x_hat"], (-padding_left, -padding_right, -padding_top, -padding_bottom)
)
tensor2img(out_dec["im_x_hat"], save_name)
return {
"psnr": psnr(p_x, out_dec["im_x_hat"]),
"bpp": pixel_bits
}
def test(opt):
device = "cuda" if opt.cuda and torch.cuda.is_available() else "cpu"
lmbda_list = [0, 1, 2, 3, 4]
ll = len(lmbda_list)
result_array = np.zeros([2, ll])
for jj in range(ll): # range(0, 7): # range(0, 7):
opt.lmbda = lmbda_list[jj]
net = create_model(opt)
net.to(device)
if not len(opt.ckpt) == 0:
ckpt_path = opt.ckpt
else:
ckpt_path = './ckpt/{model}/{idx}-best.pth.tar'.format(
model=opt.model, idx = opt.lmbda)
checkpoint = torch.load(ckpt_path)
net.load_state_dict(checkpoint['state_dict'])
net.eval()
transform = transforms.Compose([transforms.ToTensor()])
gt_img_list, de_img_list = data_load_same_name(opt.test_dataset_de, opt.test_dataset_gt)
if not (len(gt_img_list) > 0 & len(de_img_list)):
raise ValueError("Please check the dataset path! Or check the image whether it is loaded or not.")
psnr_all = []
bpp_all = []
for img_path, p_img_path in zip(de_img_list, gt_img_list):
img = Image.open(img_path).convert('RGB')
image_or = Image.open(p_img_path).convert('RGB')
basename = os.path.basename(img_path)
save_name = f'./result/Ours/{opt.model}/{opt.label_str}/{lmbda_list[jj]}/{basename}'
if not os.path.exists(os.path.dirname(save_name)):
os.makedirs(os.path.dirname(save_name))
result = test_img(
net,
transform(img),
transform(image_or),
save_name, lmbda_list[jj], opt.label_str)
psnr_all.append(result['psnr'])
bpp_all.append(result['bpp'])
#result_str1 = '{}-----psnr:{:.2f}, bpp:{:.2f}'.format(
# opt.model,
# result['psnr'],
# result['bpp'])
#print(result_str1)
psnr_all = np.array(psnr_all)
bpp_all = np.array(bpp_all)
result_array[0, jj] = np.mean(psnr_all)
result_array[1, jj] = np.mean(bpp_all)
result_str = '{} psnr:{:.2f}, bpp:{:.2f}'.format(
opt.model,
np.mean(psnr_all),
np.mean(bpp_all))
print(result_str)
psnr_all = np.array(psnr_all)
bpp_all = np.array(bpp_all)
result_array[0, jj] = np.mean(psnr_all)
result_array[1, jj] = np.mean(bpp_all)
print('----------result------')
for ii in range(2):
print(result_array[ii, :])
print("\n")
print('----------result------')
for ii in range(2):
result_str = ''
for kk in range(ll):
result_str += f'{result_array[ii, kk]}\t'
print(result_str)
print("\n")
if __name__ == "__main__":
opt = config.args
if opt.mode == 'train':
train(opt)
elif opt.mode == 'test':
test(opt)