@@ -120,7 +120,7 @@ lemma I₃_eq [IsProbabilityMeasure (ℙ : Measure Ω)] : I[V : W | S] = I₂ :=
120
120
have hS : Measurable S := by fun_prop
121
121
rw [condMutualInfo_eq hV hW hS, condMutualInfo_eq hU hW hS, chain_rule'' ℙ hU hS,
122
122
chain_rule'' ℙ hV hS, chain_rule'' ℙ hW hS, chain_rule'' ℙ _ hS, chain_rule'' ℙ _ hS,
123
- IdentDistrib.entropy_eq hUVS, IdentDistrib.entropy_eq hUVWS]
123
+ hUVS.entropy_congr, hUVWS.entropy_congr ]
124
124
· exact Measurable.prod hU hW
125
125
· exact Measurable.prod hV hW
126
126
@@ -153,7 +153,7 @@ local notation3:max "c[" A " | " B " # " C " | " D "]" =>
153
153
154
154
include h_indep h₁ h₂ in
155
155
lemma hU [IsProbabilityMeasure (ℙ : Measure Ω)] : H[U] = H[X₁' + X₂'] :=
156
- IdentDistrib.entropy_eq (h₁.add h₂
156
+ IdentDistrib.entropy_congr (h₁.add h₂
157
157
(h_indep.indepFun (show (0 : Fin 4 ) ≠ 1 by norm_cast))
158
158
(h_indep.indepFun (show (2 : Fin 4 ) ≠ 3 by norm_cast)))
159
159
@@ -165,7 +165,7 @@ lemma independenceCondition1 :
165
165
166
166
include h₁ h₂ h_indep in
167
167
lemma hV [IsProbabilityMeasure (ℙ : Measure Ω)] : H[V] = H[X₁ + X₂'] :=
168
- IdentDistrib.entropy_eq (h₁.symm.add h₂
168
+ IdentDistrib.entropy_congr (h₁.symm.add h₂
169
169
(h_indep.indepFun (show (2 : Fin 4 ) ≠ 1 by norm_cast))
170
170
(h_indep.indepFun (show (0 : Fin 4 ) ≠ 3 by norm_cast)))
171
171
@@ -240,9 +240,8 @@ lemma sum_dist_diff_le [IsProbabilityMeasure (ℙ : Measure Ω)] [Module (ZMod 2
240
240
(independenceCondition3 hX₁ hX₂ hX₁' hX₂' h_indep)
241
241
242
242
have aux1 : H[S] + H[V] - H[X₁'] - H[X₁ + X₂'] = H[S ; ℙ] - H[X₁ ; ℙ] := by
243
- rw [hV X₁ X₂ X₁' X₂' h₁ h₂ h_indep, h₁.entropy_eq]; ring
244
- rw [← ProbabilityTheory.IdentDistrib.rdist_eq (IdentDistrib.refl p.hmeas1.aemeasurable) h₁,
245
- V_add_eq, aux1] at aux2
243
+ rw [hV X₁ X₂ X₁' X₂' h₁ h₂ h_indep, h₁.entropy_congr]; ring
244
+ rw [← h₁.rdist_congr_right p.hmeas1.aemeasurable, V_add_eq, aux1] at aux2
246
245
linarith [aux2]
247
246
248
247
have ineq4 : d[X₀₂ # V | S] - d[X₀₂ # X₂] ≤ (H[S ; ℙ] - H[X₂ ; ℙ])/2 := by
@@ -341,7 +340,7 @@ lemma cond_c_eq_integral [IsProbabilityMeasure (ℙ : Measure Ω')]
341
340
rw [← condRuzsaDist'_eq_integral _ hY hZ, ← condRuzsaDist'_eq_integral _ hY hZ, integral_const,
342
341
integral_const]
343
342
have : IsProbabilityMeasure (Measure.map Z ℙ) := isProbabilityMeasure_map hZ.aemeasurable
344
- simp only [measure_univ, ENNReal.one_toReal , smul_eq_mul, one_mul]
343
+ simp only [measure_univ, ENNReal.toReal_one , smul_eq_mul, one_mul]
345
344
346
345
variable {T₁ T₂ T₃ : Ω' → G} (hT : T₁+T₂+T₃ = 0 )
347
346
variable (hT₁ : Measurable T₁) (hT₂ : Measurable T₂) (hT₃ : Measurable T₃)
@@ -391,7 +390,7 @@ lemma construct_good_prelim :
391
390
have h2 : p.η * sum2 ≤ p.η * (d[p.X₀₁ # T₁] - d[p.X₀₁ # X₁] + I[T₁ : T₃] / 2 ) := by
392
391
have : sum2 = d[p.X₀₁ # T₁ | T₃] - d[p.X₀₁ # X₁] := by
393
392
simp only [integral_sub .of_finite .of_finite, integral_const, measure_univ,
394
- ENNReal.one_toReal , smul_eq_mul, one_mul, sub_left_inj, sum2]
393
+ ENNReal.toReal_one , smul_eq_mul, one_mul, sub_left_inj, sum2]
395
394
simp_rw [condRuzsaDist'_eq_sum hT₁ hT₃,
396
395
integral_eq_setIntegral (FiniteRange.null_of_compl _ T₃), integral_finset _ _ IntegrableOn.finset,
397
396
Measure.map_apply hT₃ (.singleton _), smul_eq_mul]
@@ -402,7 +401,7 @@ lemma construct_good_prelim :
402
401
have h3 : p.η * sum3 ≤ p.η * (d[p.X₀₂ # T₂] - d[p.X₀₂ # X₂] + I[T₂ : T₃] / 2 ) := by
403
402
have : sum3 = d[p.X₀₂ # T₂ | T₃] - d[p.X₀₂ # X₂] := by
404
403
simp only [integral_sub .of_finite .of_finite, integral_const, measure_univ,
405
- ENNReal.one_toReal , smul_eq_mul, one_mul, sub_left_inj, sum3]
404
+ ENNReal.toReal_one , smul_eq_mul, one_mul, sub_left_inj, sum3]
406
405
simp_rw [condRuzsaDist'_eq_sum hT₂ hT₃,
407
406
integral_eq_setIntegral (FiniteRange.null_of_compl _ T₃), integral_finset _ _ IntegrableOn.finset,
408
407
Measure.map_apply hT₃ (.singleton _), smul_eq_mul]
0 commit comments