@@ -45,7 +45,7 @@ variable (X₁ X₂ X₁' X₂' : Ω → G)
45
45
46
46
variable (h₁ : IdentDistrib X₁ X₁') (h₂ : IdentDistrib X₂ X₂')
47
47
48
- variable (h_indep : iIndepFun ( fun _i => hG) ![X₁, X₂, X₁', X₂'])
48
+ variable (h_indep : iIndepFun ![X₁, X₂, X₁', X₂'])
49
49
50
50
variable (h_min : tau_minimizes p X₁ X₂)
51
51
@@ -81,7 +81,7 @@ private lemma hmeas2 {G : Type*} [AddCommGroup G] [Fintype G] [hG : MeasurableSp
81
81
include h_indep hX₁ hX₂ hX₁' hX₂' h₁ in
82
82
/-- The quantity `I_3 = I[V:W|S]` is equal to `I_2`. -/
83
83
lemma I₃_eq [IsProbabilityMeasure (ℙ : Measure Ω)] : I[V : W | S] = I₂ := by
84
- have h_indep2 : iIndepFun ( fun _ ↦ hG) ![X₁', X₂, X₁, X₂'] := by
84
+ have h_indep2 : iIndepFun ![X₁', X₂, X₁, X₂'] := by
85
85
exact h_indep.reindex_four_cbad
86
86
have hident : IdentDistrib (fun a (i : Fin 4 ) => ![X₁, X₂, X₁', X₂'] i a)
87
87
(fun a (j : Fin 4 ) => ![X₁', X₂, X₁, X₂'] j a) := by
@@ -160,7 +160,7 @@ lemma hU [IsProbabilityMeasure (ℙ : Measure Ω)] : H[U] = H[X₁' + X₂'] :=
160
160
variable {X₁ X₂ X₁' X₂'} in
161
161
include h_indep hX₁ hX₂ hX₁' hX₂' in
162
162
lemma independenceCondition1 :
163
- iIndepFun ( fun _ ↦ hG) ![X₁, X₂, X₁' + X₂'] :=
163
+ iIndepFun ![X₁, X₂, X₁' + X₂'] :=
164
164
h_indep.apply_two_last hX₁ hX₂ hX₁' hX₂' measurable_add
165
165
166
166
include h₁ h₂ h_indep in
@@ -172,31 +172,31 @@ lemma hV [IsProbabilityMeasure (ℙ : Measure Ω)] : H[V] = H[X₁ + X₂'] :=
172
172
include h_indep hX₁ hX₂ hX₁' hX₂' in
173
173
variable {X₁ X₂ X₁' X₂'} in
174
174
lemma independenceCondition2 :
175
- iIndepFun ( fun _ ↦ hG) ![X₂, X₁, X₁' + X₂'] :=
175
+ iIndepFun ![X₂, X₁, X₁' + X₂'] :=
176
176
independenceCondition1 hX₂ hX₁ hX₁' hX₂' h_indep.reindex_four_bacd
177
177
178
178
include h_indep hX₁ hX₂ hX₁' hX₂' in
179
179
variable {X₁ X₂ X₁' X₂'} in
180
180
lemma independenceCondition3 :
181
- iIndepFun ( fun _ ↦ hG) ![X₁', X₂, X₁ + X₂'] :=
181
+ iIndepFun ![X₁', X₂, X₁ + X₂'] :=
182
182
independenceCondition1 hX₁' hX₂ hX₁ hX₂' h_indep.reindex_four_cbad
183
183
184
184
include h_indep hX₁ hX₂ hX₁' hX₂' in
185
185
variable {X₁ X₂ X₁' X₂'} in
186
186
lemma independenceCondition4 :
187
- iIndepFun ( fun _ ↦ hG) ![X₂, X₁', X₁ + X₂'] :=
187
+ iIndepFun ![X₂, X₁', X₁ + X₂'] :=
188
188
independenceCondition1 hX₂ hX₁' hX₁ hX₂' h_indep.reindex_four_bcad
189
189
190
190
include h_indep hX₁ hX₂ hX₁' hX₂' in
191
191
variable {X₁ X₂ X₁' X₂'} in
192
192
lemma independenceCondition5 :
193
- iIndepFun ( fun _ ↦ hG) ![X₁, X₁', X₂ + X₂'] :=
193
+ iIndepFun ![X₁, X₁', X₂ + X₂'] :=
194
194
independenceCondition1 hX₁ hX₁' hX₂ hX₂' h_indep.reindex_four_acbd
195
195
196
196
include h_indep hX₁ hX₂ hX₁' hX₂' in
197
197
variable {X₁ X₂ X₁' X₂'} in
198
198
lemma independenceCondition6 :
199
- iIndepFun ( fun _ ↦ hG) ![X₂, X₂', X₁' + X₁] :=
199
+ iIndepFun ![X₂, X₂', X₁' + X₁] :=
200
200
independenceCondition1 hX₂ hX₂' hX₁' hX₁ h_indep.reindex_four_bdca
201
201
202
202
set_option maxHeartbeats 400000 in
@@ -303,7 +303,7 @@ lemma sum_dist_diff_le [IsProbabilityMeasure (ℙ : Measure Ω)] [Module (ZMod 2
303
303
add_le_add (add_le_add step₁ step₂) step₃
304
304
_ = 3 * H[S ; ℙ] - 3 /2 * H[X₁ ; ℙ] -3 /2 * H[X₂ ; ℙ] := by ring
305
305
306
- have h_indep' : iIndepFun ( fun _i => hG) ![X₁, X₂, X₂', X₁'] := by
306
+ have h_indep' : iIndepFun ![X₁, X₂, X₂', X₁'] := by
307
307
refine .of_precomp (Equiv.swap (2 : Fin 4 ) 3 ).surjective ?_
308
308
convert h_indep using 1
309
309
ext x
@@ -500,7 +500,7 @@ theorem tau_strictly_decreases_aux
500
500
(show Measurable W by fun_prop) (show Measurable S by fun_prop)
501
501
have h1 := sum_condMutual_le p X₁ X₂ X₁' X₂' hX₁ hX₂ hX₁' hX₂' h₁ h₂ h_indep h_min
502
502
have h2 := sum_dist_diff_le p X₁ X₂ X₁' X₂' hX₁ hX₂ hX₁' hX₂' h₁ h₂ h_indep h_min
503
- have h_indep' : iIndepFun ( fun _i => hG) ![X₁, X₂, X₂', X₁'] := by
503
+ have h_indep' : iIndepFun ![X₁, X₂, X₂', X₁'] := by
504
504
let σ : Fin 4 ≃ Fin 4 :=
505
505
{ toFun := ![0 , 1 , 3 , 2 ]
506
506
invFun := ![0 , 1 , 3 , 2 ]
0 commit comments