Skip to content

Commit 88a979f

Browse files
committed
chore: flip Coalgebra-on.ρ-comult
1 parent ff2098d commit 88a979f

File tree

5 files changed

+12
-12
lines changed

5 files changed

+12
-12
lines changed

src/Cat/Functor/Adjoint/Comonadic.lagda.md

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -76,7 +76,7 @@ Comparison-CoEM .F₀ x = L.₀ x , alg where
7676
alg : Coalgebra-on L∘R (L.₀ x)
7777
alg .Coalgebra-on.ρ = L.₁ (adj.unit.η _)
7878
alg .Coalgebra-on.ρ-counit = adj.zig
79-
alg .Coalgebra-on.ρ-comult = L.weave (sym (adj.unit.is-natural _ _ _))
79+
alg .Coalgebra-on.ρ-comult = L.weave (adj.unit.is-natural _ _ _)
8080
```
8181

8282
<details>

src/Cat/Instances/Coalgebras.lagda.md

Lines changed: 3 additions & 3 deletions
Original file line numberDiff line numberDiff line change
@@ -58,7 +58,7 @@ module _ {o ℓ} {C : Precategory o ℓ} {W : Functor C C} (cm : Comonad-on W) w
5858
field
5959
ρ : Hom A (W₀ A)
6060
ρ-counit : W.ε A ∘ ρ ≡ id
61-
ρ-comult : W₁ ρ ∘ ρ ≡ δ A ∘ ρ
61+
ρ-comult : δ A ∘ ρ ≡ W₁ ρ ∘ ρ
6262
```
6363

6464
This definition is rather abstract, but has a nice intuition in terms of
@@ -233,7 +233,7 @@ gives us **cofree coalgebras**.
233233
Cofree-coalgebra A .fst = W₀ A
234234
Cofree-coalgebra A .snd .ρ = δ _
235235
Cofree-coalgebra A .snd .ρ-counit = δ-unitr
236-
Cofree-coalgebra A .snd .ρ-comult = δ-assoc
236+
Cofree-coalgebra A .snd .ρ-comult = sym δ-assoc
237237
238238
Cofree : Functor C (Coalgebras W)
239239
Cofree .F₀ = Cofree-coalgebra
@@ -251,7 +251,7 @@ the forgetful functor, we get a right adjoint!
251251
```agda
252252
Forget⊣Cofree : πᶠ (Coalgebras-over W) ⊣ Cofree
253253
Forget⊣Cofree .unit .η (x , α) .fst = α .ρ
254-
Forget⊣Cofree .unit .η (x , α) .snd = α .ρ-comult
254+
Forget⊣Cofree .unit .η (x , α) .snd = sym (α .ρ-comult)
255255
Forget⊣Cofree .unit .is-natural x y f = ext (sym (f .snd))
256256
257257
Forget⊣Cofree .counit .η x = W.ε x

src/Cat/Instances/Coalgebras/Cartesian.lagda.md

Lines changed: 4 additions & 4 deletions
Original file line numberDiff line numberDiff line change
@@ -351,12 +351,12 @@ formalised proof is a bit annoying, it's hidden in this
351351
{p = W.extendl (f .snd)
352352
∙∙ ap₂ _∘_ refl wit
353353
∙∙ W.extendl (sym (g .snd))}
354-
(pulll (W.weave p'.p₁∘universal) ∙ pullr p'.p₁∘universal)
355-
(pulll (W.weave p'.p₂∘universal) ∙ pullr p'.p₂∘universal)
356-
(pulll (sym (comult.is-natural _ _ _)) ∙∙ pullr p'.p₁∘universal ∙∙ extendl (sym α.ρ-comult))
354+
(pulll (sym (comult.is-natural _ _ _)) ∙∙ pullr p'.p₁∘universal ∙∙ extendl α.ρ-comult)
357355
( pulll (sym (comult.is-natural _ _ _))
358356
∙∙ pullr p'.p₂∘universal
359-
∙∙ extendl (sym β.ρ-comult))
357+
∙∙ extendl β.ρ-comult)
358+
(pulll (W.weave p'.p₁∘universal) ∙ pullr p'.p₁∘universal)
359+
(pulll (W.weave p'.p₂∘universal) ∙ pullr p'.p₂∘universal)
360360
```
361361

362362
</details>

src/Cat/Instances/Coalgebras/Colimits.lagda.md

Lines changed: 2 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -109,12 +109,12 @@ module _ {jo jℓ} {J : Precategory jo jℓ} (F : Functor J (Coalgebras W)) wher
109109
coapex-coalgebra .ρ-comult = colim-over.unique₂ _
110110
(λ f → C.pullr $ C.pullr (sym (F.₁ f .snd))
111111
∙ C.pulll (sym (W.W-∘ _ _) ∙ ap W.W₁ (colim-over.commutes f)))
112-
(λ j → C.pullr (colim-over.factors _ _))
113112
(λ j → C.pullr (colim-over.factors _ _)
114113
∙ sym (C.pulll (sym (W.W-∘ _ _) ∙ ap W.W₁ (colim-over.factors _ _) ∙ W.W-∘ _ _)
115-
∙∙ C.extendr (FAlg.ρ-comult j)
114+
∙∙ C.extendr (sym (FAlg.ρ-comult j))
116115
∙∙ ap (C._∘ FAlg.ρ j) (sym (W.comult.is-natural _ _ _))
117116
∙ sym (C.assoc _ _ _)))
117+
(λ j → C.pullr (colim-over.factors _ _))
118118
```
119119

120120
<!--

src/Cat/Instances/Coalgebras/Limits.lagda.md

Lines changed: 2 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -229,10 +229,10 @@ To show that $\eps \nu = \id$, it will suffice to show that $\psi_j \eps
229229
(λ f → W.extendl (F.₁ f .snd) ∙ ap₂ _∘_ refl
230230
( pulll (F.₁ f .snd)
231231
∙ pullr (sym (L.eps .is-natural _ _ f) ∙ elimr L.Ext.F-id)))
232-
(λ j → W.extendl ν-β ∙ ap₂ _∘_ refl ν-β)
233232
(λ j → pulll (sym (comult.is-natural _ _ _))
234233
∙∙ pullr ν-β
235-
∙∙ extendl (sym (F.₀ j .snd .ρ-comult)))
234+
∙∙ extendl (F.₀ j .snd .ρ-comult))
235+
(λ j → W.extendl ν-β ∙ ap₂ _∘_ refl ν-β)
236236
237237
open Ran
238238
open is-ran

0 commit comments

Comments
 (0)