Skip to content

A significant difference between the results obtained from testing after training and reloading the model after saving. How to save and reload the model correctly for reasoning? #73

Open
@FanY1999

Description

@FanY1999

I don't understand why the reasoning effect of reloading the trained model is very poor. Did I write something wrong? Looking forward to your reply.

the key code is as follows:

train mode

  • some codes of train mode(in main())
model=BertForSequenceClassification.from_pretrained(config.bert_path, return_dict=True,num_labels=config.num_classes).to(device)
delta_config = AutoDeltaConfig.from_dict({"delta_type":"adapter"})
delta = AdapterModel.from_config(delta_config, backbone_model=model)
delta.freeze_module()
delta.log()
train(config, model, train_iter, dev_iter, test_iter,delta)
  • train() part
for i, (trains, labels) in enumerate(train_iter):
    batch={'input_ids':trains[0],'attention_mask':trains[2],'labels':labels}
    outputs=model(**batch)
    loss=outputs.loss
    model.zero_grad()
    loss.backward()
    optimizer.step()
    ……
    ……
    dev_acc, dev_loss = evaluate(config, model, dev_iter)
    if dev_loss < dev_best_loss:
        dev_best_loss = dev_loss
        delta.save_finetuned(config.save_path)
test(config, model, test_iter)    # test after training finished
  • result
    acc=0.7735

resoning/test mode

  • some codes of reasoning/test mode(in main())
model=BertForSequenceClassification.from_pretrained(config.bert_path, return_dict=True,num_labels=config.num_classes).to(device)
delta=AdapterModel.from_finetuned(config.save_path,backbone_model=model)
test(config, model, test_iter)
  • result
    acc=0.5713

Metadata

Metadata

Assignees

No one assigned

    Labels

    No labels
    No labels

    Type

    No type

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions