Skip to content

AuReMe/Ontosunburst

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Ontosunburst

Sunburst visualisation of an ontology representing classes of sets of metabolic objects

image image

Requirements

Mandatory

Python 3.10 recommended

Requirements from requirements.txt

  • numpy>=1.26.1
  • plotly>=5.17.0
  • scipy>=1.11.3
  • pandas>=1.5.3

Optional

Need Apache Jena Fuseki SPARQL server to generate your own CHEBI and GO ontology input files

Installation

PyPI

pip install ontosunburst

Local

Inside the cloned repository :

pip install -e .

Utilisation

Availabilities

Available Ontologies :

  • Metacyc classes v26.0 (compounds, reactions, pathways): metacyc
  • Enzyme commission numbers v05 feb 2025 (EC-numbers): ec
  • Kegg classes v113.0 (modules, pathways, ko, ko_transporter, metabolite, metabolite_lipid): kegg
  • Gene Ontology Cellular Components classes v06 feb 2025 : go_cc
  • Gene Ontology Molecular Functions classes v06 feb 2025 : go_mf
  • Gene Ontology Biological Process classes v06 feb 2025 : go_bp
  • Gene Ontology classes (Fusion of 3) v06 feb 2025 : go
  • ChEBI classes v239: chebi
  • ChEBI roles: v239: chebi_r

Personal ontology possible :

  • Define all the ontology classes relationship in a dictionary {class: [parent classes]}
  • Define the root : unique class with no parents

2 Analysis :

  • Topology (1 set + 1 optional reference set) : displays proportion (number of occurrences) representation of all classes
  • Enrichment (1 set + 1 reference set) : displays enrichment analysis significance of a set according to a reference set of metabolic objects

Documentation

View full documentation here : https://github.com/AuReMe/Ontosunburst/wiki

References:

  • plotly: Plotly Technologies Inc. Collaborative data science. Montréal, QC, 2015. https://plot.ly.

Ontologies DataBases

  • MetaCyc:

    • Caspi, R., Billington, R., Keseler, I. M., Kothari, A., Krummenacker, M., Midford, P. E., Ong, W. K., Paley, S., Subhraveti, P., & Karp, P. D. (2020). The MetaCyc database of metabolic pathways and enzymes - a 2019 update. Nucleic acids research, 48(D1), D445–D453. https://doi.org/10.1093/nar/gkz862
    • Ron Caspi, Kate Dreher, Peter D. Karp, The challenge of constructing, classifying, and representing metabolic pathways, FEMS Microbiology Letters, Volume 345, Issue 2, August 2013, Pages 85–93, https://doi.org/10.1111/1574-6968.12194
    • Karp, P.D., Caspi, R. A survey of metabolic databases emphasizing the MetaCyc family. Arch Toxicol 85, 1015–1033 (2011). https://doi.org/10.1007/s00204-011-0705-2
  • KEGG:

    • Minoru Kanehisa, Miho Furumichi, Yoko Sato, Yuriko Matsuura, Mari Ishiguro-Watanabe, KEGG: biological systems database as a model of the real world, Nucleic Acids Research, Volume 53, Issue D1, 6 January 2025, Pages D672–D677, https://doi.org/10.1093/nar/gkae909
  • EC:

  • ChEBI:

    • Janna Hastings, Gareth Owen, Adriano Dekker, Marcus Ennis, Namrata Kale, Venkatesh Muthukrishnan, Steve Turner, Neil Swainston, Pedro Mendes, Christoph Steinbeck, ChEBI in 2016: Improved services and an expanding collection of metabolites, Nucleic Acids Research, Volume 44, Issue D1, 4 January 2016, Pages D1214–D1219, https://doi.org/10.1093/nar/gkv1031
  • GO:

    • The Gene Ontology Consortium , Suzi A Aleksander, James Balhoff, Seth Carbon, J Michael Cherry, Harold J Drabkin, Dustin Ebert, Marc Feuermann, Pascale Gaudet, Nomi L Harris, David P Hill, Raymond Lee, Huaiyu Mi, Sierra Moxon, Christopher J Mungall, Anushya Muruganugan, Tremayne Mushayahama, Paul W Sternberg, Paul D Thomas, Kimberly Van Auken, Jolene Ramsey, Deborah A Siegele, Rex L Chisholm, Petra Fey, Maria Cristina Aspromonte, Maria Victoria Nugnes, Federica Quaglia, Silvio Tosatto, Michelle Giglio, Suvarna Nadendla, Giulia Antonazzo, Helen Attrill, Gil dos Santos, Steven Marygold, Victor Strelets, Christopher J Tabone, Jim Thurmond, Pinglei Zhou, Saadullah H Ahmed, Praoparn Asanitthong, Diana Luna Buitrago, Meltem N Erdol, Matthew C Gage, Mohamed Ali Kadhum, Kan Yan Chloe Li, Miao Long, Aleksandra Michalak, Angeline Pesala, Armalya Pritazahra, Shirin C C Saverimuttu, Renzhi Su, Kate E Thurlow, Ruth C Lovering, Colin Logie, Snezhana Oliferenko, Judith Blake, Karen Christie, Lori Corbani, Mary E Dolan, Harold J Drabkin, David P Hill, Li Ni, Dmitry Sitnikov, Cynthia Smith, Alayne Cuzick, James Seager, Laurel Cooper, Justin Elser, Pankaj Jaiswal, Parul Gupta, Pankaj Jaiswal, Sushma Naithani, Manuel Lera-Ramirez, Kim Rutherford, Valerie Wood, Jeffrey L De Pons, Melinda R Dwinell, G Thomas Hayman, Mary L Kaldunski, Anne E Kwitek, Stanley J F Laulederkind, Marek A Tutaj, Mahima Vedi, Shur-Jen Wang, Peter D’Eustachio, Lucila Aimo, Kristian Axelsen, Alan Bridge, Nevila Hyka-Nouspikel, Anne Morgat, Suzi A Aleksander, J Michael Cherry, Stacia R Engel, Kalpana Karra, Stuart R Miyasato, Robert S Nash, Marek S Skrzypek, Shuai Weng, Edith D Wong, Erika Bakker, Tanya Z Berardini, Leonore Reiser, Andrea Auchincloss, Kristian Axelsen, Ghislaine Argoud-Puy, Marie-Claude Blatter, Emmanuel Boutet, Lionel Breuza, Alan Bridge, Cristina Casals-Casas, Elisabeth Coudert, Anne Estreicher, Maria Livia Famiglietti, Marc Feuermann, Arnaud Gos, Nadine Gruaz-Gumowski, Chantal Hulo, Nevila Hyka-Nouspikel, Florence Jungo, Philippe Le Mercier, Damien Lieberherr, Patrick Masson, Anne Morgat, Ivo Pedruzzi, Lucille Pourcel, Sylvain Poux, Catherine Rivoire, Shyamala Sundaram, Alex Bateman, Emily Bowler-Barnett, Hema Bye-A-Jee, Paul Denny, Alexandr Ignatchenko, Rizwan Ishtiaq, Antonia Lock, Yvonne Lussi, Michele Magrane, Maria J Martin, Sandra Orchard, Pedro Raposo, Elena Speretta, Nidhi Tyagi, Kate Warner, Rossana Zaru, Alexander D Diehl, Raymond Lee, Juancarlos Chan, Stavros Diamantakis, Daniela Raciti, Magdalena Zarowiecki, Malcolm Fisher, Christina James-Zorn, Virgilio Ponferrada, Aaron Zorn, Sridhar Ramachandran, Leyla Ruzicka, Monte Westerfield, The Gene Ontology knowledgebase in 2023, Genetics, Volume 224, Issue 1, May 2023, iyad031, https://doi.org/10.1093/genetics/iyad031
    • Ashburner, M., Ball, C., Blake, J. et al. Gene Ontology: tool for the unification of biology. Nat Genet 25, 25–29 (2000). https://doi.org/10.1038/75556

About

Sunburst representation of ontologies

Resources

License

Stars

Watchers

Forks

Packages

No packages published

Languages

  • Python 100.0%