Skip to content

HowToNameMe/micro-expression

Repository files navigation

Micro Expression Generation with Thin-plate Spline Motion Model and Face Parsing

Installation

We support python3.(Recommended version is Python 3.9). To install the dependencies run:

pip install -r requirements.txt

YAML configs

In our method, all the configurations are contained in the file config/Mixed_data-10-8-wMaskWarp-aug.yaml.

Datasets

  1. Download three datasets CASME II, SMIC, SAMM

  2. Download the test dataset megc2022-synthesis

  3. Download the shape_predictor_68_face_landmarks.dat and put it in the datasetfolder

  4. Put the three training set and one test set in the datasetfolder. The file tree is shown as follows:

.
├── CASMEII
│   ├── CASME2-coding-20190701.xlsx
│   ├── CASME2_RAW_selected
├── copy_.py
├── crop.py
├── megc2022-synthesis
│   ├── source_samples
│   ├── target_template_face
├── SAMM
│   ├── SAMM
│   ├── SAMM_Micro_FACS_Codes_v2.xlsx
├── shape_predictor_68_face_landmarks.dat
└── SMIC
    ├── SMIC_all_raw


  1. Run the following code
cd dataset
python crop.py
python copy_.py
mv Mixed_dataset_test.csv ./Mixed_dataset
cd ..

the root of the preprocessed dataset is ./dataset/Mixed_dataset

  1. Download the train_mask.tar.gz and unzip it, then put it in the ./dataset/Mixed_dataset/train_mask

Training

To train a model on specific dataset run:

CUDA_VISIBLE_DEVICES=0,1,2,3 python run.py \
        --config config/Mixed_data-10-8-wMaskWarp-aug.yaml \
        --device_ids 0,1,2,3

A log folder named after the timestamp will be created. Checkpoints, loss values, reconstruction results will be saved to this folder.

Micro expression generation

CUDA_VISIBLE_DEVICES=0 python demo.py \
    --config config/Mixed_data-10-8-wMaskWarp-aug.yaml  \
    --checkpoint 'path to the checkpoint' \
    --result_video './ckpt/relative' \
    --mode 'relative'

Our provided model can be downloaded here The final results are in the folder ./ckpt/relative .

Acknowledgments

The main code is based upon FOMM, MRAA and TPS

Thanks for the excellent works!

About

MEGC2022

Topics

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published