Skip to content

align_grad_clip #74080

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 5 commits into from
Jul 24, 2025
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
40 changes: 40 additions & 0 deletions python/paddle/nn/clip.py
Original file line number Diff line number Diff line change
Expand Up @@ -717,6 +717,7 @@ def _dygraph_clip(self, params_grads):
sum_square_list = []
sum_square_list_fp16 = []
sum_square_list_fp32 = []
flag_new_pp = True
if len(params_grads) > 0 and len(params_grads[0]) > 0:
src_mesh = params_grads[0][0].process_mesh
else:
Expand All @@ -742,6 +743,7 @@ def _dygraph_clip(self, params_grads):
# if the gradient mesh is not equal to src mesh
# do reshard to get the result of squared_l2 from other pp stage mesh
if src_mesh is not None and g.process_mesh != src_mesh:
flag_new_pp = False
pp_mesh = get_complete_pp_mesh(g.process_mesh)
if set(g.process_mesh.process_ids) < set(pp_mesh.process_ids):
sum_square = dist.reshard(
Expand Down Expand Up @@ -790,6 +792,44 @@ def async_add_n(var_list):
global_norm_var.append(global_norm_var_fp64)

global_norm_var = async_add_n(global_norm_var)
global_mesh = dist.get_mesh()
is_pp_enable = False
if global_mesh is not None:
is_pp_enable = (
"pp" in global_mesh.dim_names
and global_mesh.get_dim_size("pp") > 1
)
if (
flag_new_pp and src_mesh is not None and is_pp_enable
): # Use new pp_flask,At this point global_norm_var it's sub_norm_var_sum,we need to sum it between different pp_stage
global_pp_mesh = global_mesh.get_mesh_with_dim("pp")
reorder_mesh = global_pp_mesh._mesh.reshape(
global_mesh.get_dim_size("pp"), -1
)
curr_rank = dist.get_rank()
assert (
curr_rank in global_pp_mesh.process_ids
), "current rank is not in pp process mesh"
curr_rank_sub_group = None
for col in range(
reorder_mesh.shape[-1]
): # every_sub_mesh need to create a new group,otherwise,the group id of sub_mesh will be the same,which will cause the all_gather error
sub_mesh = dist.ProcessMesh(reorder_mesh[:, col], ["pp"])
sub_group = dist.new_group(sub_mesh.process_ids)
if curr_rank in reorder_mesh[:, col]:
curr_rank_sub_group = sub_group
global_norm_var_list = []
dist.all_gather(
global_norm_var_list,
global_norm_var._local_value(),
group=curr_rank_sub_group,
)
real_global_norm_var = async_add_n(global_norm_var_list)
global_norm_var = dist.shard_tensor(
real_global_norm_var,
global_norm_var.process_mesh,
global_norm_var.placements,
)

if self.should_comm_on_shard_dim and hasattr(self, 'sharding_group'):
paddle.distributed.all_reduce(
Expand Down
85 changes: 81 additions & 4 deletions test/auto_parallel/PP_Schedules_demo.py
Original file line number Diff line number Diff line change
Expand Up @@ -15,15 +15,19 @@
import random

import numpy as np
from schedules import Schedule1F1B, ScheduleFThenB, ScheduleVPP
from stage import (
PipelineStage,
)

import paddle
import paddle.distributed as dist
from paddle import nn
from paddle.distributed import fleet
from paddle.distributed.auto_parallel.pipelining.schedules import (
Schedule1F1B,
ScheduleFThenB,
ScheduleVPP,
)
from paddle.distributed.auto_parallel.pipelining.stage import (
PipelineStage,
)
from paddle.io import DataLoader, Dataset


Expand Down Expand Up @@ -405,13 +409,80 @@ def test_dp_pp(self):
opt.clear_grad()
return losses_by_step

def test_pp_model_with_ClipGradByGlobalNorm(self):
"""Test pipeline parallel model with ClipGradByGlobalNorm using PPMyModel as the baseline"""
fix_seeds()
pp_model = PPMyModel()
opt = paddle.optimizer.AdamW(
learning_rate=0.001,
parameters=pp_model.parameters(),
grad_clip=paddle.nn.ClipGradByGlobalNorm(1.0),
)
loss_fn = nn.MSELoss()
dataset = RandomDataset(image_size=8, output_size=8, num_samples=8)
loader = DataLoader(dataset, batch_size=1)
pp_losses_step = []
num_iterations = 20

for iter_idx in range(num_iterations):
pp_losses_micro_batch = []
for i, (data, label) in enumerate(loader):
output = pp_model(data)
loss = loss_fn(output, label)
pp_losses_micro_batch.append(loss.item())
loss.backward()
pp_losses_step.append(
np.array(pp_losses_micro_batch, dtype=np.float32).mean()
)
opt.step()
opt.clear_grad()
return pp_losses_step

def test_ScheduleFThenB_with_ClipGradByGlobalNorm(self):
fix_seeds()
self.model = PPMyModel_SingleStage()
self.micro_batches = 8
self.stage = PipelineStage(self.model, self.rank, 4, group=self.group)
self.stage.has_backward = True
loss_fn_ = nn.MSELoss()
schedule = ScheduleFThenB(
self.stage, self.micro_batches, loss_fn=loss_fn_
)
opt = paddle.optimizer.AdamW(
learning_rate=0.001,
parameters=self.model.parameters(),
grad_clip=paddle.nn.ClipGradByGlobalNorm(1.0),
)
dataset = RandomDataset(image_size=8, output_size=8, num_samples=8)
loader = DataLoader(dataset, batch_size=8)
losses_by_step = []
num_iterations = 20

for iter_idx in range(num_iterations):
losses_by_micro_batch = []
for i, (data, label) in enumerate(loader):
schedule.step(data, target=label, losses=losses_by_micro_batch)
if self.rank == 3:
losses_by_step.append(
np.array(losses_by_micro_batch, dtype=np.float32).mean()
)
opt.step()
opt.clear_grad()
return losses_by_step

def run_test(self):
"""Compare losses between three training methods"""
self.setUpClass()
pp_losses = self.test_pp_model()
scheduleFThenB_losses = self.test_ScheduleFThenB()
schedule1f1b_losses = self.test_Schedule1F1B()
schedulevpp_losses = self.test_ScheduleVPP()
pp_model_with_ClipGradByGlobalNorm_losses = (
self.test_pp_model_with_ClipGradByGlobalNorm()
)
scheduleFThenB_with_ClipGradByGlobalNorm_losses = (
self.test_ScheduleFThenB_with_ClipGradByGlobalNorm()
)
dp_pp_losses = self.test_dp_pp()

if self.rank == 3:
Expand Down Expand Up @@ -439,6 +510,12 @@ def run_test(self):
rtol=1e-5,
)

np.testing.assert_allclose(
pp_model_with_ClipGradByGlobalNorm_losses,
scheduleFThenB_with_ClipGradByGlobalNorm_losses,
rtol=1e-5,
)


if __name__ == '__main__':
Test_Schedules().run_test()