Skip to content

Series and convergence #1445

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Open
wants to merge 2 commits into
base: master
Choose a base branch
from
Open
Show file tree
Hide file tree
Changes from 1 commit
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
8 changes: 8 additions & 0 deletions src/analysis.lagda.md
Original file line number Diff line number Diff line change
@@ -0,0 +1,8 @@
# Analysis

```agda
module analysis where

open import analysis.commutative-rings-in-complete-metric-spaces public
open import analysis.series public
```
100 changes: 100 additions & 0 deletions src/analysis/commutative-rings-in-complete-metric-spaces.lagda.md
Original file line number Diff line number Diff line change
@@ -0,0 +1,100 @@
# Commutative rings in complete metric spaces

```agda
module analysis.commutative-rings-in-complete-metric-spaces where
```

<details><summary>Imports</summary>

```agda
open import commutative-algebra.commutative-rings

open import foundation.dependent-pair-types
open import foundation.identity-types
open import foundation.universe-levels

open import metric-spaces.complete-metric-spaces
open import metric-spaces.metric-spaces
open import metric-spaces.metric-structures
open import metric-spaces.premetric-spaces
open import metric-spaces.premetric-structures
```

</details>

## Idea

A commutative ring in a complete metric space is a setting in which power series
and their convergence can be considered.

## Definition

```agda
Commutative-Ring-In-Complete-Metric-Space :
(l1 l2 : Level) → UU (lsuc l1 ⊔ lsuc l2)
Commutative-Ring-In-Complete-Metric-Space l1 l2 =
Σ ( Commutative-Ring l1)
( λ R →
Σ ( Premetric l2 (type-Commutative-Ring R))
( λ μ →
Σ ( is-metric-Premetric μ)
( λ is-metric-μ →
is-complete-Metric-Space
( (type-Commutative-Ring R , μ) , is-metric-μ))))

module _
{l1 l2 : Level} (RM : Commutative-Ring-In-Complete-Metric-Space l1 l2)
where

commutative-ring-Commutative-Ring-In-Complete-Metric-Space :
Commutative-Ring l1
commutative-ring-Commutative-Ring-In-Complete-Metric-Space = pr1 RM

type-Commutative-Ring-In-Complete-Metric-Space : UU l1
type-Commutative-Ring-In-Complete-Metric-Space =
type-Commutative-Ring
( commutative-ring-Commutative-Ring-In-Complete-Metric-Space)

structure-Commutative-Ring-In-Complete-Metric-Space :
Premetric l2 type-Commutative-Ring-In-Complete-Metric-Space
structure-Commutative-Ring-In-Complete-Metric-Space = pr1 (pr2 RM)

is-metric-structure-Commutative-Ring-In-Complete-Metric-Space :
is-metric-Premetric structure-Commutative-Ring-In-Complete-Metric-Space
is-metric-structure-Commutative-Ring-In-Complete-Metric-Space =
pr1 (pr2 (pr2 RM))

metric-space-Commutative-Ring-In-Complete-Metric-Space : Metric-Space l1 l2
metric-space-Commutative-Ring-In-Complete-Metric-Space =
( ( type-Commutative-Ring-In-Complete-Metric-Space ,
structure-Commutative-Ring-In-Complete-Metric-Space) ,
is-metric-structure-Commutative-Ring-In-Complete-Metric-Space)

is-complete-metric-space-Commutative-Ring-In-Complete-Metric-Space :
is-complete-Metric-Space
metric-space-Commutative-Ring-In-Complete-Metric-Space
is-complete-metric-space-Commutative-Ring-In-Complete-Metric-Space =
pr2 (pr2 (pr2 RM))

complete-metric-space-Commutative-Ring-In-Complete-Metric-Space :
Complete-Metric-Space l1 l2
complete-metric-space-Commutative-Ring-In-Complete-Metric-Space =
( metric-space-Commutative-Ring-In-Complete-Metric-Space ,
is-complete-metric-space-Commutative-Ring-In-Complete-Metric-Space)
```

### Construction

```agda
commutative-ring-in-complete-metric-space-Commutative-Ring-Complete-Metric-Space :
{l1 l2 : Level} →
(R : Commutative-Ring l1) (M : Complete-Metric-Space l1 l2) →
(type-Commutative-Ring R = type-Complete-Metric-Space M) →
Commutative-Ring-In-Complete-Metric-Space l1 l2
commutative-ring-in-complete-metric-space-Commutative-Ring-Complete-Metric-Space
R M refl =
( R ,
structure-Complete-Metric-Space M ,
is-metric-structure-Complete-Metric-Space M ,
is-complete-metric-space-Complete-Metric-Space M)
```
75 changes: 75 additions & 0 deletions src/analysis/series.lagda.md
Original file line number Diff line number Diff line change
@@ -0,0 +1,75 @@
# Series

```agda
module analysis.series where
```

<details><summary>Imports</summary>

```agda
open import analysis.commutative-rings-in-complete-metric-spaces

open import commutative-algebra.sums-of-finite-sequences-of-elements-commutative-rings

open import foundation.dependent-pair-types
open import foundation.propositions
open import foundation.sequences
open import foundation.universe-levels

open import metric-spaces.limits-of-sequences-metric-spaces

open import univalent-combinatorics.standard-finite-types
```

</details>

## Idea

A series is an infinite sum taken over the natural numbers. If it has a limit,
it is said to converge, otherwise it is said to diverge.
Comment on lines +28 to +29
Copy link
Collaborator

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Please add links and concept invocation(s)


## Definition

```agda
record
series
{l1 l2 : Level} (RM : Commutative-Ring-In-Complete-Metric-Space l1 l2) :
UU l1
where

constructor series-terms

field
terms-series : sequence (type-Commutative-Ring-In-Complete-Metric-Space RM)

open series public

module _
{l1 l2 : Level}
(RM : Commutative-Ring-In-Complete-Metric-Space l1 l2) (σ : series RM)
where

partial-sums-series :
sequence (type-Commutative-Ring-In-Complete-Metric-Space RM)
partial-sums-series n =
sum-fin-sequence-type-Commutative-Ring
( commutative-ring-Commutative-Ring-In-Complete-Metric-Space RM)
( n)
( λ k → terms-series σ (nat-Fin n k))

converges-series : UU (l1 ⊔ l2)
converges-series =
has-limit-sequence-Metric-Space
( metric-space-Commutative-Ring-In-Complete-Metric-Space RM)
( partial-sums-series)

is-prop-converges-series : is-prop converges-series
is-prop-converges-series =
is-prop-has-limit-sequence-Metric-Space
( metric-space-Commutative-Ring-In-Complete-Metric-Space RM)
( partial-sums-series)

converges-prop-series : Prop (l1 ⊔ l2)
pr1 converges-prop-series = converges-series
pr2 converges-prop-series = is-prop-converges-series
```
11 changes: 11 additions & 0 deletions src/metric-spaces/complete-metric-spaces.lagda.md
Original file line number Diff line number Diff line change
Expand Up @@ -21,6 +21,8 @@ open import foundation.universe-levels
open import metric-spaces.cauchy-approximations-metric-spaces
open import metric-spaces.convergent-cauchy-approximations-metric-spaces
open import metric-spaces.metric-spaces
open import metric-spaces.metric-structures
open import metric-spaces.premetric-structures
```

</details>
Expand Down Expand Up @@ -85,6 +87,15 @@ module _
is-complete-metric-space-Complete-Metric-Space :
is-complete-Metric-Space metric-space-Complete-Metric-Space
is-complete-metric-space-Complete-Metric-Space = pr2 A

structure-Complete-Metric-Space : Premetric l2 type-Complete-Metric-Space
structure-Complete-Metric-Space =
structure-Metric-Space metric-space-Complete-Metric-Space

is-metric-structure-Complete-Metric-Space :
is-metric-Premetric structure-Complete-Metric-Space
is-metric-structure-Complete-Metric-Space =
is-metric-structure-Metric-Space metric-space-Complete-Metric-Space
```

### The equivalence between Cauchy approximations and convergent Cauchy approximations in a complete metric space
Expand Down