Skip to content

Multivariable polynomial functors #1446

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Open
wants to merge 9 commits into
base: master
Choose a base branch
from
Open
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
4 changes: 4 additions & 0 deletions src/foundation/structure.lagda.md
Original file line number Diff line number Diff line change
Expand Up @@ -64,3 +64,7 @@ has-structure-equiv' :
{l1 l2 : Level} (𝒫 : UU l1 → UU l2) {X Y : UU l1} → X ≃ Y → 𝒫 Y → 𝒫 X
has-structure-equiv' 𝒫 e = tr 𝒫 (inv (eq-equiv e))
```

## See also

- [Species of types](species.species-of-types.md)
85 changes: 44 additions & 41 deletions src/foundation/universal-property-identity-types.lagda.md
Original file line number Diff line number Diff line change
Expand Up @@ -31,6 +31,8 @@ open import foundation-core.functoriality-dependent-pair-types
open import foundation-core.homotopies
open import foundation-core.propositional-maps
open import foundation-core.propositions
open import foundation-core.retractions
open import foundation-core.sections
open import foundation-core.torsorial-type-families
```

Expand All @@ -46,47 +48,48 @@ also known as the **type theoretic Yoneda lemma**.
## Theorem

```agda
ev-refl :
{l1 l2 : Level} {A : UU l1} (a : A) {B : (x : A) → a = x → UU l2} →
((x : A) (p : a = x) → B x p) → B a refl
ev-refl a f = f a refl

ev-refl' :
{l1 l2 : Level} {A : UU l1} (a : A) {B : (x : A) → x = a → UU l2} →
((x : A) (p : x = a) → B x p) → B a refl
ev-refl' a f = f a refl

abstract
is-equiv-ev-refl :
{l1 l2 : Level} {A : UU l1} (a : A)
{B : (x : A) → a = x → UU l2} → is-equiv (ev-refl a {B})
is-equiv-ev-refl a =
is-equiv-is-invertible
( ind-Id a _)
( λ b → refl)
( λ f → eq-htpy
( λ x → eq-htpy
( ind-Id a
( λ x' p' → ind-Id a _ (f a refl) x' p' = f x' p')
( refl) x)))

equiv-ev-refl :
{l1 l2 : Level} {A : UU l1} (a : A) {B : (x : A) → a = x → UU l2} →
((x : A) (p : a = x) → B x p) ≃ (B a refl)
pr1 (equiv-ev-refl a) = ev-refl a
pr2 (equiv-ev-refl a) = is-equiv-ev-refl a

equiv-ev-refl' :
{l1 l2 : Level} {A : UU l1} (a : A) {B : (x : A) → x = a → UU l2} →
((x : A) (p : x = a) → B x p) ≃ B a refl
equiv-ev-refl' a {B} =
( equiv-ev-refl a) ∘e
( equiv-Π-equiv-family (λ x → equiv-precomp-Π (equiv-inv a x) (B x)))

is-equiv-ev-refl' :
{l1 l2 : Level} {A : UU l1} (a : A)
{B : (x : A) → x = a → UU l2} → is-equiv (ev-refl' a {B})
is-equiv-ev-refl' a = is-equiv-map-equiv (equiv-ev-refl' a)
module _
{l1 l2 : Level} {A : UU l1} (a : A) {B : (x : A) → a = x → UU l2}
where

ev-refl : ((x : A) (p : a = x) → B x p) → B a refl
ev-refl f = f a refl

is-retraction-ev-refl : is-retraction (ind-Id a B) ev-refl
is-retraction-ev-refl = refl-htpy

abstract
is-section-ev-refl : is-section (ind-Id a B) ev-refl
is-section-ev-refl f =
eq-htpy
( λ x →
eq-htpy
( ind-Id a
( λ x' p' → ind-Id a _ (f a refl) x' p' = f x' p')
( refl)
( x)))

is-equiv-ev-refl : is-equiv ev-refl
is-equiv-ev-refl =
is-equiv-is-invertible (ind-Id a B) is-retraction-ev-refl is-section-ev-refl

equiv-ev-refl : ((x : A) (p : a = x) → B x p) ≃ B a refl
equiv-ev-refl = (ev-refl , is-equiv-ev-refl)

module _
{l1 l2 : Level} {A : UU l1} (a : A) {B : (x : A) → x = a → UU l2}
where

ev-refl' : ((x : A) (p : x = a) → B x p) → B a refl
ev-refl' f = f a refl

equiv-ev-refl' : ((x : A) (p : x = a) → B x p) ≃ B a refl
equiv-ev-refl' =
( equiv-ev-refl a) ∘e
( equiv-Π-equiv-family (λ x → equiv-precomp-Π (equiv-inv a x) (B x)))

is-equiv-ev-refl' : is-equiv ev-refl'
is-equiv-ev-refl' = is-equiv-map-equiv equiv-ev-refl'
```

### The type of fiberwise maps from `Id a` to a torsorial type family `B` is equivalent to the type of fiberwise equivalences
Expand Down
3 changes: 2 additions & 1 deletion src/species/hasse-weil-species.lagda.md
Original file line number Diff line number Diff line change
Expand Up @@ -26,7 +26,8 @@ types that preserves cartesian products. The **Hasse-Weil species** is a species
of finite inhabited types defined for any finite inhabited type `k` as

```text
Σ (p : structure-semisimple-commutative-ring-Finite-Type k) ; S (commutative-finite-ring-finite-semisimple-commutative-ring-structure-semisimple-commutative-ring-Finite-Type k p)
Σ ( p : structure-semisimple-commutative-ring-Finite-Type k),
( S (commutative-finite-ring-finite-semisimple-commutative-ring-structure-semisimple-commutative-ring-Finite-Type k p))
```

## Definitions
Expand Down
1 change: 1 addition & 0 deletions src/trees.lagda.md
Original file line number Diff line number Diff line change
Expand Up @@ -44,6 +44,7 @@ open import trees.morphisms-directed-trees public
open import trees.morphisms-enriched-directed-trees public
open import trees.multiset-indexed-dependent-products-of-types public
open import trees.multisets public
open import trees.multivariable-polynomial-functors public
open import trees.planar-binary-trees public
open import trees.plane-trees public
open import trees.polynomial-endofunctors public
Expand Down
Loading