Automatically document your analytics setup by analyzing tracking code and generating data schemas from tools like Segment, Amplitude, Mixpanel, and more π
π Understand Your Tracking β Effortlessly analyze your codebase for track
calls so you can see all your analytics events, properties, and triggers in one place. No more guessing what's being tracked!
π Auto-Document Events β Generates a complete YAML schema that captures all events and properties, including where they're implemented in your codebase.
π΅οΈββοΈ Track Changes Over Time β Easily spot unintended changes or ensure your analytics setup remains consistent across updates.
π Populate Data Catalogs β Automatically generate structured documentation that can help feed into your data catalog, making it easier for everyone to understand your events.
Run without installation! Just use:
npx @flisk/analyze-tracking /path/to/project [options]
-g, --generateDescription
: Generate descriptions of fields (default:false
)-p, --provider <provider>
: Specify a provider (options:openai
,gemini
)-m, --model <model>
: Specify a model (ex:gpt-4.1-nano
,gpt-4o-mini
,gemini-2.0-flash-lite-001
)-o, --output <output_file>
: Name of the output file (default:tracking-schema.yaml
)-c, --customFunction <function_name>
: Specify a custom tracking function
πΒ Important: If you are using generateDescription
, you must set the appropriate credentials for the LLM provider you are using as an environment variable. OpenAI uses OPENAI_API_KEY
and Google Vertex AI uses GOOGLE_APPLICATION_CREDENTIALS
.
Note on Custom Functions π‘
Use this if you have your own in-house tracker or a wrapper function that calls other tracking libraries.
We currently only support functions that follow the following format:
JavaScript/TypeScript/Python/Ruby:
yourCustomTrackFunctionName('<event_name>', {
<event_parameters>
});
Go:
yourCustomTrackFunctionName("<event_name>", map[string]any{}{
"<property_name>": "<property_value>",
})
A clear YAML schema that shows where your events are tracked, their properties, and more. Here's an example:
version: 1
source:
repository: <repository_url>
commit: <commit_sha>
timestamp: <commit_timestamp>
events:
<event_name>:
description: <ai_generated_description>
implementations:
- description: <ai_generated_description>
path: <path_to_file>
line: <line_number>
function: <function_name>
destination: <platform_name>
properties:
<property_name>:
description: <ai_generated_description>
type: <property_type>
Use this to understand where your events live in the code and how they're being tracked.
Your LLM of choice is used for generating descriptions of events, properties, and implementations.
See schema.json for a JSON Schema of the output.
Library | JavaScript/TypeScript | Python | Ruby | Go |
---|---|---|---|---|
Google Analytics | β | β | β | β |
Segment | β | β | β | β |
Mixpanel | β | β | β | β |
Amplitude | β | β | β | β |
Rudderstack | β | β | β³οΈ | β³οΈ |
mParticle | β | β | β | β |
PostHog | β | β | β | β |
Pendo | β | β | β | β |
Heap | β | β | β | β |
Snowplow | β | β | β | β |
Custom Function | β | β | β | β |
β³οΈ Rudderstack's SDKs often use the same format as Segment, so Rudderstack events may be detected as Segment events.
Google Analytics
JavaScript/TypeScript
gtag('event', '<event_name>', {
'<property_name>': '<property_value>'
});
Segment
JavaScript/TypeScript
analytics.track('<event_name>', {
'<property_name>': '<property_value>'
});
Python
analytics.track('<event_name>', {
'<property_name>': '<property_value>'
})
Ruby
Analytics.track(
event: '<event_name>',
properties: {
'<property_name>': '<property_value>'
}
)
Go
client.Enqueue(analytics.Track{
UserId: "user-id",
Event: "<event_name>",
Properties: analytics.NewProperties().
Set("<property_name>", "<property_value>"),
})
Mixpanel
JavaScript/TypeScript
mixpanel.track('<event_name>', {
'<property_name>': '<property_value>'
});
Python
mixpanel.track('<event_name>', {
'<property_name>': '<property_value>'
})
Ruby
tracker.track('<distinct_id>', '<event_name>', {
'<property_name>': '<property_value>'
})
Go
ctx := context.Background()
mp := mixpanel.NewApiClient("YOUR_PROJECT_TOKEN")
mp.Track(ctx, []*mixpanel.Event{
mp.NewEvent("<event_name>", "", map[string]any{}{
"<property_name>": "<property_value>",
}),
})
Amplitude
JavaScript/TypeScript
amplitude.track('<event_name>', {
<event_parameters>
});
Python
client.track(
BaseEvent(
event_type="<event_name>",
user_id="<user_id>",
event_properties={
"<property_name>": "<property_value>",
},
)
)
Go
client.Track(amplitude.Event{
UserID: "<user_id>",
EventType: "<event_name>",
EventProperties: map[string]any{}{
"<property_name>": "<property_value>",
},
})
Rudderstack
JavaScript/TypeScript
rudderanalytics.track('<event_name>', {
<event_parameters>
});
Python
rudder_analytics.track('<event_name>', {
'<property_name>': '<property_value>'
})
Ruby
analytics.track(
user_id: '<user_id>',
event: '<event_name>',
properties: {
'<property_name>': '<property_value>'
}
)
Go
client.Enqueue(analytics.Track{
UserId: "<user_id>",
Event: "<event_name>",
Properties: analytics.NewProperties().
Set("<property_name>", "<property_value>"),
})
mParticle
JavaScript/TypeScript
mParticle.logEvent('<event_name>', mParticle.EventType.<event_type>, {
'<property_name>': '<property_value>'
});
PostHog
JavaScript/TypeScript
posthog.capture('<event_name>', {
'<property_name>': '<property_value>'
});
Python
posthog.capture('distinct_id', '<event_name>', {
'<property_name>': '<property_value>'
})
# Or
posthog.capture(
'distinct_id',
event='<event_name>',
properties={
'<property_name>': '<property_value>'
}
)
Ruby
posthog.capture({
distinct_id: '<distinct_id>',
event: '<event_name>',
properties: {
'<property_name>': '<property_value>'
}
})
Go
client.Enqueue(posthog.Capture{
DistinctId: "<distinct_id>",
Event: "<event_name>",
Properties: posthog.NewProperties().
Set("<property_name>", "<property_value>"),
})
Pendo
JavaScript/TypeScript
pendo.track('<event_name>', {
<event_parameters>
});
Python
pendo.track('<event_name>', {
'<property_name>': '<property_value>'
})
Heap
JavaScript/TypeScript
heap.track('<event_name>', {
<event_parameters>
});
Python
heap.track('<event_name>', {
'<property_name>': '<property_value>'
})
Snowplow (Structured Events)
JavaScript/TypeScript
tracker.track(buildStructEvent({
action: '<event_name>',
category: '<category>',
label: '<label>',
property: '<property>',
value: <value>
}));
Python
tracker.track(StructuredEvent(
action="<event_name>",
category="<category>",
label="<label>",
property_="<property>",
value=<value>,
))
Ruby
tracker.track_struct_event(
action: '<event_name>',
category: '<category>',
label: '<label>',
property: '<property>',
value: <value>
)
Go
tracker.TrackStructEvent(sp.StructuredEvent{
Action: sp.NewString("<event_name>"),
Category: sp.NewString("<category>"),
Label: sp.NewString("<label>"),
Property: sp.NewString("<property>"),
Value: sp.NewFloat64(<value>),
})
We're actively improving this package. Found a bug? Have a feature request? Open an issue or submit a pull request!