Skip to content

huggingface/pyspark_huggingface

Repository files navigation

Hugging Face x Spark

GitHub release Number of datasets

Spark Data Source for Hugging Face Datasets

A Spark Data Source for accessing 🤗 Hugging Face Datasets:

  • Stream datasets from Hugging Face as Spark DataFrames
  • Select subsets and splits, apply projection and predicate filters
  • Save Spark DataFrames as Parquet files to Hugging Face
  • Fast deduped uploads
  • Fully distributed
  • Authentication via huggingface-cli login or tokens
  • Compatible with Spark 4 (with auto-import)
  • Backport for Spark 3.5, 3.4 and 3.3

Installation

pip install pyspark_huggingface

Usage

Load a dataset (here stanfordnlp/imdb):

import pyspark_huggingface
df = spark.read.format("huggingface").load("stanfordnlp/imdb")

Save to Hugging Face:

# Login with huggingface-cli login
df.write.format("huggingface").save("username/my_dataset")
# Or pass a token manually
df.write.format("huggingface").option("token", "hf_xxx").save("username/my_dataset")

Advanced

Select a split:

test_df = (
    spark.read.format("huggingface")
    .option("split", "test")
    .load("stanfordnlp/imdb")
)

Select a subset/config:

test_df = (
    spark.read.format("huggingface")
    .option("config", "sample-10BT")
    .load("HuggingFaceFW/fineweb-edu")
)

Filters columns and rows (especially efficient for Parquet datasets):

df = (
    spark.read.format("huggingface")
    .option("filters", '[("language_score", ">", 0.99)]')
    .option("columns", '["text", "language_score"]')
    .load("HuggingFaceFW/fineweb-edu")
)

Fast deduped uploads

Hugging Face uses Xet: a dedupe-based storage which enables fast deduped uploads.

Unlike traditional remote storage, uploads are faster on Xet because duplicate data is only uploaded once. For example: if some or all of the data already exists in other files on Xet, it is not uploaded again, saving bandwidth and speeding up uploads. Deduplication for Parquet is enabled through Content Defined Chunking (CDC).

Thanks to Parquet CDC and Xet deduplication, saving a dataset on Hugging Face is faster than on any traditional remote storage.

For more information, see https://huggingface.co/blog/parquet-cdc.

Backport

While the Data Source API was introcuded in Spark 4, this package includes a backport for older versions.

Importing pyspark_huggingface patches the PySpark reader and writer to add the "huggingface" data source. It is compatible with PySpark 3.5, 3.4 and 3.3:

>>> import pyspark_huggingface
huggingface datasource enabled for pyspark 3.x.x (backport from pyspark 4)

The import is only necessary on Spark 3.x to enable the backport. Spark 4 automatically imports pyspark_huggingface as soon as it is installed, and registers the "huggingface" data source.

Development

Install uv if not already done.

Then, from the project root directory, sync dependencies and run tests.

uv sync
uv run pytest