A lightweight, transparent wrapper around SQLAlchemy (both 1.x and 2.x) designed for interactive database exploration, debugging, testing, and REPL-driven development workflows. Rather than building yet another ORM or complex abstraction layer, sql-helper trusts you to understand SQL and provides transparent, immediate access to databases with minimal mental overhead.
It integrates seamlessly with IPython, supports automatic Docker database provisioning, and works across SQLite, MySQL, PostgreSQL, and Redshift with consistent APIs that adapt to database-specific behaviors. The library also provides adaptive result formatting based on the query structure. Single values for aggregations, simple lists for single columns, and lists of dictionaries for multiple columns.
Tested for Python 3.6 - 3.13 using both SQLAlchemy 1.x and 2.x against PostgreSQL 13 and MySQL 8.0 docker containers.
Connect with a DB url in the following formats:
postgresql://someuser:somepassword@somehost[:someport]/somedatabase
mysql://someuser:somepassword@somehost[:someport]/somedatabase
- note: urls that start with
mysql://
will automatically be changed to usemysql+pymysql://
since this packages uses thepymysql
driver
- note: urls that start with
sqlite:///somedb.db
redshift+psycopg2://someuser:somepassword@somehost/somedatabase
- note: requires separate install of the
sqlalchemy-redshift
package
- note: requires separate install of the
First, ensure that the pg_config
executable is on the system and that the cryptography
dependency can either be built with Rust or the pre-compiled wheel can be used. (See "Dependencies" section below)
Then install with pip
:
pip install sql-helper
sudo apt-get install -y libpq-dev
or
brew install postgresql
If using Python 3.6, be sure to update pip to at least version 20.3.4 (default pip is 18.1) so that the pre-compiled wheel for cryptography
can be used. Otherwise, you will need to install the rust compiler so that the cryptography
dependency can be built (curl --proto '=https' --tlsv1.2 -sSf https://sh.rustup.rs | sh -s -- -y
)
If using Python 3.5, there is no pre-compiled wheel for cryptography
(even when upgrading pip to version 20.3.4). It also cannot be built if the rust compiler is installed. Support for Python 3.5 is effectively removed.
According to https://nvd.nist.gov/vuln/detail/CVE-2024-36039, pymysql versions below 1.1.1 are vulnerable to SQL injection. Version 1.1.1 is only available for Python 3.7+ (final version for Python 3.6 is 1.0.2; final working version for Python 3.5 is 0.9.3).
Only needed if connecting to AWS Redshift
pip install sqlalchemy-redshift
sql-helper uses a settings.ini file for Docker and connection configuration:
[default]
postgresql_image_version = 13-alpine
mysql_image_version = 8.0
postgresql_username = postgresuser
postgresql_password = some.pass
postgresql_db = postgresdb
mysql_username = mysqluser
mysql_password = some.pass
mysql_root_password = root.pass
mysql_db = mysqldb
connect_timeout = 5
sql_url =
[dev]
postgresql_container_name = sql-helper-postgres
mysql_container_name = sql-helper-mysql
postgresql_port = 5432
mysql_port = 3306
postgresql_rm = False
mysql_rm = False
postgresql_data_dir =
mysql_data_dir =
postgresql_url = postgresql://postgresuser:some.pass@localhost:5432/postgresdb
mysql_url = mysql://mysqluser:some.pass@localhost:3306/mysqldb
sqlite_url = sqlite:////tmp/some-dev.db
[test]
postgresql_container_name = sql-helper-postgres-test
mysql_container_name = sql-helper-mysql-test
postgresql_port = 5440
mysql_port = 3310
postgresql_rm = True
mysql_rm = True
postgresql_data_dir =
mysql_data_dir =
postgresql_url = postgresql://postgresuser:some.pass@localhost:5440/postgresdb
mysql_url = mysql://mysqluser:some.pass@localhost:3310/mysqldb
sqlite_url = sqlite:////tmp/some-test.db
On first use, the default settings.ini file is copied to
~/.config/sql-helper/settings.ini
Use the APP_ENV
environment variable to specify which section of the settings.ini
file your settings will be loaded from. Any settings in the default
section can be overwritten if explicity set in another section. If no APP_ENV
is explicitly set, dev
is assumed.
import sql_helper as sqh
# Connect to a database with automatic Docker container startup if needed
sql = sqh.SQL('postgresql://user:pass@localhost:5432/mydb', attempt_docker=True, wait=True)
# Execute queries with adaptive result formatting
# Single values are returned directly
user_count = sql.execute('SELECT count(*) FROM users') # Returns: 42
# Single columns become simple lists
user_names = sql.execute('SELECT name FROM users LIMIT 3') # Returns: ['Alice', 'Bob', 'Carol']
# Multiple columns become lists of dictionaries
users = sql.execute('SELECT id, name, email FROM users LIMIT 2')
# Returns: [{'id': 1, 'name': 'Alice', 'email': '[email protected]'}, ...]
# Explore schema interactively
tables = sql.get_tables()
columns = sql.get_columns('users', name_only=True)
timestamp_fields = sql.get_timestamp_columns('users', name_only=True)
# Insert data with automatic parameterization
sql.insert('users', {'name': 'David', 'email': '[email protected]'})
sql.insert('users', [
{'name': 'Eve', 'email': '[email protected]'},
{'name': 'Frank', 'email': '[email protected]'}
])
# Interactive database selection (prompts user to choose from configured URLs)
selected_url = sqh.select_url_from_settings()
sql = sqh.SQL(selected_url, attempt_docker=True)
What you gain: Zero-friction database exploration with automatic environment setup, consistent result formatting across query types, and transparent SQL execution that you can inspect and debug. The library eliminates the cognitive overhead of connection management, driver selection, and result processing while preserving full control over the actual SQL being executed.
-
urls_from_settings()
- Discover configured database connections- Returns: List of all configured connection URLs from settings.ini
- Internal calls: None
-
select_url_from_settings()
- Interactive database selection- Returns: User-selected connection URL from configured options
- Internal calls:
urls_from_settings()
,ih.make_selections()
-
start_docker(db_type, exception=False, show=False, force=False, wait=True, sleeptime=2)
- Launch database containersdb_type
: 'postgresql' or 'mysql'exception
: Raise exceptions on Docker errorsshow
: Display Docker commands and outputforce
: Stop and remove existing container before creating new onewait
: Block until database accepts connectionssleeptime
: Seconds between connection attempts when waiting- Returns: Result from Docker operation
- Internal calls:
bh.tools.docker_postgres_start()
,bh.tools.docker_mysql_start()
-
stop_docker(db_type, exception=False, show=False)
- Stop database containersdb_type
: 'postgresql' or 'mysql'exception
: Raise exceptions on Docker errorsshow
: Display Docker commands and output- Returns: Result from Docker operation
- Internal calls:
bh.tools.docker_stop()
-
SQL(url, connect_timeout=5, attempt_docker=False, wait=False, **connect_args)
- Create a database connection instanceurl
: Connection URL (postgresql://, mysql://, sqlite://, redshift+psycopg2://)connect_timeout
: Seconds to wait for connection before giving upattempt_docker
: Automatically start Docker container if connection fails and URL matches settingswait
: Block until Docker container is ready to accept connections**connect_args
: Additional arguments passed to underlying connection engine- Returns: Configured SQL instance ready for database operations
- Internal calls:
start_docker()
-
SQL.execute(statement, params={})
- Execute SQL with adaptive result formattingstatement
: SQL string or path to SQL fileparams
: Dictionary or list of dictionaries for parameterized queries- Returns: Adaptive results based on query structure: single values for aggregations, lists for single columns, list of dicts for multiple columns, single dict/value for single-row results with parentheses
- Internal calls: None
-
SQL.insert(table, data)
- Insert data with automatic parameterizationtable
: Target table namedata
: Dictionary (single row) or list of dictionaries (multiple rows)- Returns: Generated INSERT statement string for debugging
- Internal calls: None
-
SQL.call_procedure(procedure, list_of_params=[])
- Execute stored proceduresprocedure
: Name of stored procedurelist_of_params
: List of parameters to pass- Returns: List of results from procedure execution
- Internal calls: None
-
SQL.get_tables()
- List all tables in the database- Returns: List of table names (PostgreSQL returns schema.tablename format)
- Internal calls: None
-
SQL.get_schemas(sort=False)
- List database schemas (PostgreSQL only)sort
: Alphabetically sort results- Returns: List of schema names
- Internal calls: None
-
SQL.get_columns(table, schema=None, name_only=False, sort=False, **kwargs)
- Examine table structuretable
: Table name (supports schema.table notation for PostgreSQL)schema
: Schema name (optional, auto-detected from table if using dot notation)name_only
: Return simple list of column names instead of detailed dictionariessort
: Alphabetically sort results**kwargs
: Additional arguments passed to column inspection- Returns: List of column dictionaries or column names if name_only=True
- Internal calls: None
-
SQL.get_indexes(table, schema=None)
- List table indexestable
: Table nameschema
: Schema name (optional)- Returns: List of dictionaries with index information
- Internal calls: None
-
SQL.get_timestamp_columns(table, schema=None, name_only=False, sort=False, **kwargs)
- Find date/time columnstable
: Table nameschema
: Schema name (optional)name_only
: Return simple list of column names instead of detailed dictionariessort
: Alphabetically sort results**kwargs
: Additional arguments passed to column inspection- Returns: Columns that are DATE, DATETIME, TIME, or TIMESTAMP types
- Internal calls:
SQL.get_columns()
-
SQL.get_autoincrement_columns(table, schema=None, name_only=False, sort=False, **kwargs)
- Find auto-incrementing columnstable
: Table nameschema
: Schema name (optional)name_only
: Return simple list of column names instead of detailed dictionariessort
: Alphabetically sort results**kwargs
: Additional arguments passed to column inspection- Returns: Columns with autoincrement properties
- Internal calls:
SQL.get_columns()
-
SQL.get_required_columns(table, schema=None, name_only=False, sort=False, **kwargs)
- Find required columnstable
: Table nameschema
: Schema name (optional)name_only
: Return simple list of column names instead of detailed dictionariessort
: Alphabetically sort results**kwargs
: Additional arguments passed to column inspection- Returns: Columns that are not nullable and have no default value
- Internal calls:
SQL.get_columns()
-
SQL.get_non_nullable_columns(table, schema=None, name_only=False, sort=False, **kwargs)
- Find non-nullable columnstable
: Table nameschema
: Schema name (optional)name_only
: Return simple list of column names instead of detailed dictionariessort
: Alphabetically sort results**kwargs
: Additional arguments passed to column inspection- Returns: Columns that cannot contain NULL values
- Internal calls:
SQL.get_columns()
-
SQL.get_procedure_names(schema='', sort=False)
- List stored proceduresschema
: Schema name (PostgreSQL only)sort
: Alphabetically sort results- Returns: List of procedure names
- Internal calls: None
-
SQL.get_procedure_code(procedure)
- View procedure source codeprocedure
: Procedure name- Returns: String containing the procedure definition
- Internal calls: None