Skip to content

feat(CategoryTheory/Monoidal/DayConvolution): left and right unitors for Day convolution #24993

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Open
wants to merge 8 commits into
base: master
Choose a base branch
from
3 changes: 3 additions & 0 deletions Mathlib.lean
Original file line number Diff line number Diff line change
Expand Up @@ -2336,8 +2336,11 @@ import Mathlib.CategoryTheory.Monoidal.CommGrp_
import Mathlib.CategoryTheory.Monoidal.CommMon_
import Mathlib.CategoryTheory.Monoidal.Comon_
import Mathlib.CategoryTheory.Monoidal.Conv
import Mathlib.CategoryTheory.Monoidal.DayConvolution
import Mathlib.CategoryTheory.Monoidal.Discrete
import Mathlib.CategoryTheory.Monoidal.End
import Mathlib.CategoryTheory.Monoidal.ExternalProduct.Basic
import Mathlib.CategoryTheory.Monoidal.ExternalProduct.KanExtension
import Mathlib.CategoryTheory.Monoidal.Free.Basic
import Mathlib.CategoryTheory.Monoidal.Free.Coherence
import Mathlib.CategoryTheory.Monoidal.Functor
Expand Down
1 change: 1 addition & 0 deletions Mathlib/CategoryTheory/Functor/KanExtension/Basic.lean
Original file line number Diff line number Diff line change
Expand Up @@ -189,6 +189,7 @@ lemma hom_ext_of_isLeftKanExtension {G : D ⥤ H} (γ₁ γ₂ : F' ⟶ G)

/-- If `(F', α)` is a left Kan extension of `F` along `L`, then this
is the induced bijection `(F' ⟶ G) ≃ (F ⟶ L ⋙ G)` for all `G`. -/
@[simps!]
noncomputable def homEquivOfIsLeftKanExtension (G : D ⥤ H) :
(F' ⟶ G) ≃ (F ⟶ L ⋙ G) where
toFun β := α ≫ whiskerLeft _ β
Expand Down
Loading
Loading