The langchain-yugabytedb
package implementations of core LangChain abstractions using YugabyteDB
Distributed SQL Database.
The package is released under the MIT license.
Feel free to use the abstraction as provided or else modify them / extend them as appropriate for your own application.
The package supports the asyncpg and psycopg3 drivers.
pip install -U langchain-yugabytedb
from langchain_core.documents import Document
from langchain_core.embeddings import DeterministicFakeEmbedding
from langchain_yugabytedb import YBEngine, YugabyteDBVectorStore
# Replace the connection string with your own YugabyteDB connection string
CONNECTION_STRING = "postgresql+psycopg3://yugabyte:@localhost:5433/yugabyte"
engine = PGEngine.from_connection_string(url=CONNECTION_STRING)
# Replace the vector size with your own vector size
VECTOR_SIZE = 768
embedding = DeterministicFakeEmbedding(size=VECTOR_SIZE)
TABLE_NAME = "my_doc_collection"
engine.init_vectorstore_table(
table_name=TABLE_NAME,
vector_size=VECTOR_SIZE,
)
store = YugabyteDBVectorStore.create_sync(
engine=engine,
table_name=TABLE_NAME,
embedding_service=embedding,
)
docs = [
Document(page_content="Apples and oranges"),
Document(page_content="Cars and airplanes"),
Document(page_content="Train")
]
store.add_documents(docs)
query = "I'd like a fruit."
docs = store.similarity_search(query)
print(docs)
Tip
All synchronous functions have corresponding asynchronous functions
The chat message history abstraction helps to persist chat message history in a YugabyteDB table.
YugabyteDBChatMessageHistory is parameterized using a table_name
and a session_id
.
The table_name
is the name of the table in the database where
the chat messages will be stored.
The session_id
is a unique identifier for the chat session. It can be assigned
by the caller using uuid.uuid4()
.
import uuid
from langchain_core.messages import SystemMessage, AIMessage, HumanMessage
from langchain_yugabytedb import YugabyteDBChatMessageHistory
import psycopg
# Establish a synchronous connection to the database
# (or use psycopg.AsyncConnection for async)
conn_info = ... # Fill in with your connection info
sync_connection = psycopg.connect(conn_info)
# Create the table schema (only needs to be done once)
table_name = "chat_history"
YugabyteDBChatMessageHistory.create_tables(sync_connection, table_name)
session_id = str(uuid.uuid4())
# Initialize the chat history manager
chat_history = YugabyteDBChatMessageHistory(
table_name,
session_id,
sync_connection=sync_connection
)
# Add messages to the chat history
chat_history.add_messages([
SystemMessage(content="Meow"),
AIMessage(content="woof"),
HumanMessage(content="bark"),
])
print(chat_history.messages)