Skip to content
Open
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
50 changes: 41 additions & 9 deletions modules/core/reflow.py
Original file line number Diff line number Diff line change
Expand Up @@ -100,21 +100,51 @@ def sample_rk5(self, x, t, dt, cond):
x += (7 * k_1 + 32 * k_3 + 12 * k_4 + 32 * k_5 + 7 * k_6) * dt / 90
t += dt
return x, t

def inpaint_fn(self,x,mask,inpaint_input,noise,t):
x_m=x*mask
x=(1-mask)*(t*inpaint_input+(1-t)*noise)+x_m
return x
pass
@torch.no_grad()
def inference(self, cond, b=1, x_end=None, device=None):
def inference(self, cond, b=1, x_end=None, device=None,inpaint_mask=None,inpaint_input=None):
noise = torch.randn(b, self.num_feats, self.out_dims, cond.shape[2], device=device)
t_start = hparams.get('T_start_infer', self.t_start)
if self.use_shallow_diffusion and t_start > 0:
assert x_end is not None, 'Missing shallow diffusion source.'
if inpaint_mask is not None:
assert inpaint_input is not None
inpaint_mask=inpaint_mask.float()
if inpaint_mask is None:
if self.use_shallow_diffusion and t_start > 0:
assert x_end is not None, 'Missing shallow diffusion source.'
if t_start >= 1.:
t_start = 1.
x = x_end
else:
x = t_start * x_end + (1 - t_start) * noise
else:
t_start = 0.
x = noise
else:
if t_start >= 1.:
t_start = 1.
x = x_end
x = inpaint_input
else:
x = t_start * x_end + (1 - t_start) * noise
else:
t_start = 0.
x = noise
if x_end is not None:
if t_start > 0:
x_m=(t_start * x_end + (1 - t_start) * noise)*inpaint_mask
x=(1-inpaint_mask)*(t_start * inpaint_input + (1 - t_start) * noise)+x_m
else:
x= noise
t_start = 0.
else:
if t_start > 0:
x_m=(t_start * inpaint_input + (1 - t_start) * noise)*inpaint_mask
x=(1-inpaint_mask)*(t_start * inpaint_input + (1 - t_start) * noise)+x_m
else:
x= noise
t_start = 0.




algorithm = hparams['sampling_algorithm']
infer_step = hparams['sampling_steps']
Expand All @@ -133,6 +163,8 @@ def inference(self, cond, b=1, x_end=None, device=None):
for i in tqdm(range(infer_step), desc='sample time step', total=infer_step,
disable=not hparams['infer'], leave=False):
x, _ = algorithm_fn(x, t_start + i * dts, dt, cond)
if inpaint_mask is not None:
x=self.inpaint_fn(x,inpaint_mask,inpaint_input,noise,t_start+i*dts)
x = x.float()
x = x.transpose(2, 3).squeeze(1) # [B, F, M, T] => [B, T, M] or [B, F, T, M]
return x
Expand Down